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ABSTRACT

As computational power outpaces bandwidth, handling multi-petabyte datasets, which

are easier to produce than to store or access, becomes a challenge. Traditional solutions

focus on data reduction through lossy compression or downsampling, but many overlook

considerations like the scientific tasks to be performed on the data or the computational

resources required. Additionally, there’s a lack of a common framework to gauge these

techniques’ efficacy and costs. This dissertation introduces such a framework and presents

novel data reduction techniques offering more holistic considerations and compelling

trade-offs.

A novel hierarchical data model that unifies spatial resolution and numerical precision

is developed. Most current reduction techniques focus on either resolution or precision,

but this new model allows for approximations anywhere in the 2D space of resolution and

precision, offering refined approximation in either axis without necessarily refining the

other.

A novel progressive streaming framework is proposed to study trade-offs between

reducing resolution and precision during common analysis tasks. Using the wavelet

transform, both resolution and precision-based reduction techniques can be modeled as

different orderings of wavelet coefficient bits. This enables the first-ever demonstration that

reducing both resolution and precision is significantly more effective than reducing either

alone. It further allows the optimization of bit streams for specific analysis tasks, offering

insights about how different tasks fetch data.

Lastly, the new data model is adapted to encode unstructured particle data, a common

form of data representation in scientific simulation or imaging. Borrowing techniques from

the structured case, it’s shown that the odd-even decomposition can significantly reduce

reconstruction error while maintaining a constant memory footprint. This results in novel

particle hierarchies and optimal traversal heuristics that outperform traditional approaches

in progressive decoding quality-cost trade-offs.
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CHAPTER 1

INTRODUCTION

For thousands of years, science was largely empirical, whereby humans observed and

described natural phenomena without a unifying framework. A few hundred years ago,

we began developing theoretical models to generalize the various empirically observed

phenomena into laws of nature. In the last few decades, since the advent of computers, we

started using them to simulate models too complex to be solved analytically. At the same

time, technological advancements have also produced fast instruments that can capture

vast amounts of information in real-time. These developments bring a new, data-intensive

model of science, in which scientists gain insights and breakthroughs by using computers

to study data captured by instruments or generated by simulations. Together with theory

and experiment, simulations and data analysis from the four pillars of science, with data

analysis referred to as the “fourth paragidm” [112].

With the exponential increase in compute power and the increased availability of

high-throughput instruments, both simulations and experiments can now produce data at

speeds and sizes that overwhelm most scientific workflows. In other words, our ability to

produce data has outpaced our ability to process and study them, leading to the so-called

data deluge [17]. It is common nowadays for high performance computing (HPC) centers

to generate several terabytes or more of data per simulation run, as well as for experiment

facilities to capture similar amounts of data per session. This explosion in data generation

has been made possible through an exponential increase in computational power, fueled

by decades of chip making technology. Memory bandwidth, on the other hand, has not

kept pace [191]. Memory devices, such as RAM and solid-state drives, have not seen the

same rapid advancements, thus the speed at which data can be transferred to and from

memory remains limited. Therefore, it has become overwhemingly challenging to store,

manage, and transfer scientific data to serve cutting-edge science. As a result, the rate at
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which scientific insights can be obtained by studying the generated data using computers

has been severly impeded. It is the goal of this work to ameliorate the data deluge problem.

1.1 The role of large data in modern science
To study scientific phenomena, scientists use a variety of tools and methods, of which

two of the most important are computer simulations and observations. Simulations use

mathematical models to represent the behavior of a system and predict how it will respond

to different conditions and inputs, and can be used to study a wide range of phenomena,

from fluid dynamics to molecular interactions. Computer simulations enable scientists

to better model and understand complex systems at scales difficult to capture in reality,

make predictions about future events or the behavior of systems under various conditions,

test and validate theoretical models or experimental results, and conduct experiments in

ways that may be impossible, unethical, or too costly in the real world. At the same time,

large-scale and high-resolution observational data obtained by scanning or imaging devices

can also be used to study the behavior of physical systems, such as the distribution of matter

in the universe or the behavior of materials under different conditions. Such data enable

researchers to see fine-scale details previously inaccessible or difficult to detect, provide

comprehensive spatial and temporal coverage of the phenomena being studied across

vast geographical areas and over extended periods, as well as improve the validation and

calibration of scientific models. Whether through simulations or observations, by collecting

data and analyzing it using mathematical techniques, scientists can gain new insights into

the underlying structures and behaviors of the systems under study. These insights can

then be used to develop new theories and models, leading to a deeper understanding of the

natural world and how it works.

To give concrete examples, the study of turbulent fluid mixing and related instabilities,

such as Rayleigh-Taylor and Richtmyer-Meshkov [320] through computational methods

such as DNS (direct numerical simulation) [203], is essential for understanding complex

fluid dynamics phenomena and has wide-ranging applications in various fields, including

astrophysics, fusion energy, high-energy-density physics, atmospheric and oceanic dynamics,

combustion processes, and geophysics. Combustion scientists study flame dynamics

such as the stability of turbulent flames, with the hope to design more efficient fuel
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with less pollution [310]. Neuroscientists study brain function, which emerges from the

coordinated activity of neurons, by visualizing individual fluorescently labeled axons

using three-dimensional microscopy image data captured at high resolution and high

magnification. Such images of labeled neurons can range in size from gigabytes to

terabytes [289, 293]. Climate scientists study Earth’s atmosphere and ocean circulation by

combining data from satellites, in-water instruments, and computer models to solve fluid

flow equations [195,269]. The generated data can be on the order of petabytes [71]. In material

science, understanding characteristics of foam built from a network of interconnected

ligaments is essential for exploiting the unique properties of open-cell metallic foams and

lattices [236]. Here, a data-driven approach using high-resolution CT scans can uncover the

relationships between attributes like ligament length, connectedness of junctions, and pore

size distribution as ligaments deform or fracture during compressive loading, leading to the

development of innovative materials with tailored properties for a wide range of applications

across various industries. In cosmology research, dark matter halos are over-dense regions of

dark matter particles that serve as the building blocks for cosmic structures and provide the

gravitational potential wells where baryonic matter (such as gas and stars) can accumulate

and form galaxies. Finding such halos efficiently from high-resolution cosmology simulation

data [309] that can reach several terabytes in size [85] is a critical step that provide insights

into structure formation, galaxy and black hole evolution, dark matter distribution and

gravitational lensing. The National Ecological Observatory Network (NEON) is a large-scale

ecological observation facility focusing on capturing and sharing environmental images

as well as biological sampling to facilitate a better understanding of complex ecological

processes and changes, predict the impacts of environmental change, and develop strategies

for managing and conserving ecosystems [134]. A single flight can generate several terabytes

of raw data, and considering that the multiple flights per year are conducted across various

NEON field sites on a continental scale, the total volume of remotely sensed data generated

can easily reach tens to hundreds of terabytes annually.

1.2 Scientific data analysis and visualization
Scientific data analysis involves various techniques and methods to process, interpret,

and extract meaningful information from raw data. Major categories include signal or
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image processing, geometry processing, statistical computation, topological data analysis,

machine learning, dimensionality reduction, and data visualization. I briefly summarize

these categories below.

• Data visualization represents data in graphical or pictorial forms. Human can process

pictures much faster than text or numbers, hence scientific visualization plays a crucial

role in understanding, interpreting, and communicating scientific information. Some

observational data such as medical scans or aerial images are inherently images.

For simulation data, visualization often means mapping the data values of a 2D or

3D field into colors and render the data as if it is being looked at from a virtual

camera [72]. Visualizing the data helps researchers better explore the data, identify

trends or patterns, and communicate results more effectively.

• Image processing involves both generic, pixel-level and semantic-based, object-level

extraction and manipulation methods. Pixel-level procedures include mostly signal

processing operations such as filtering, smoothing, sharpening, denoising, etc to help

make specific features or details more salient. The semantic-level procedures deal with

concepts such as corners, edges, shapes and objects. They make use of the pixel-level

procedures to perform object recognition, classification, matching, as well as image

segmentation and registration.

• Machine learning is used to uncover patterns, relationships, and insights that may

not be readily apparent through traditional analytical techniques. Machine learning

techniques can be used for tasks such as classification, regression, clustering, anomaly

detection, forecasting, and filling in missing data using a learned model.

• Dimensionality reduction involves techniques that reduce the number of variables

or features in a dataset while preserving its essential structure and relationships.

Dimensionality reduction can help simplify data analysis, make the data easier to

understand, reduce computation time, and minimize the effects of the “curse of

dimensionality”.

• Geometry processing refers to the techniques and methods used to manipulate,

analyze, and process geometric data, which are often represented as points, lines,
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curves, surfaces, or volumes. The set of geometry processing methods are diverse,

including mesh generation, simplification and smoothing, geometric transformations,

geodesic computation, segmentation, shape analysis and feature extraction, surface

parameterization, and computational geometry.

• Statistical computations are used to understand, quantify, and interpret the underlying

patterns, relationships, and uncertainties in the data. Statistical methods help

researchers draw conclusions about a population based on a sample (inference),

summarize and describe the main characteristics of a dataset (e.g., mean, median,

modev, ariance, standard deviation, range), testing hypotheses, handle missing or

noisy data, building and validating models, and quantify uncertainty associated with

estimates, predictions, and decisions. All of these ensure the validity, reliability, and

generalizability of scientific findings.

• Topological data analysis (TDA) leverages topology, the study of shapes and their

properties, to extract meaningful information from complex and high-dimensional

data. TDA has gained increasing importance in scientific data analysis due to its

robustness to noise, invariance to transformations, ability to handle high-dimensional

data, multi-scale analysis capabilities, and interpretability. Popular TDA methods

in scientific data analysis include persistence homology (capturing the "birth" and

"death" of topological features, such as connected components, loops, and voids, as

the scale of analysis changes), Morse and Morse-Smale complexes (capturing the

relationship between the critical points of a real-valued function and the topology

of its level sets to identify and analyze features in data, such as clusters, voids, and

ridges), Reeb graph (capturing the evolution of level sets of a real-valued function on

a manifold, useful for feature detection, shape analysis, and data simplification), and

merge trees (capturing the evolution of connected components of the sublevel sets

of a real-valued function, useful for studying the hierarchical structure of data and

identify significant topological features, such as clusters and voids).

1.3 Reduction and simplification of scientific data
With exponential increase in computing power, today’s supercomputers regularly

generate several hundreds of terabytes of data per simulation run. A key challenge of



6

scientific data analysis for large data is limited input/output (I/O) bandwidth. This is

because, when processing large datasets, the time taken is often dominated by the time

required to transfer the data to and from memory. Two major bottlenecks exist. First,

transferring very large datasets between remote sources, as well as accessing such data

on remote servers, can be slow due to the limited network bandwidth. Second, even after

the data is read and transferred to the destined machine(s), ready for analysis, processing

large datasets is also very slow due to the limited memory bandwidth within individual

machines. The problem can be alleviated somewhat by distributed processing, however,

the computational resources available for data analysis and visualization are usually orders

of magnitude smaller than that available for the simulations generating the data. As a

result, these bandwidth bottlenecks seriously hamper efficient data analysis and therefore

significantly slow down scientific progress.

Several approaches have been proposed to address this challenge, including: using

high-performance I/O technologies such as InfiniBand or Fiber Channel, caching the data

locally and pre-processing the data before analysis, using fast intermediate storage such as

burst buffers, using distributed computing resources to process data in parallel, optimizing

the data analysis algorithms so that they run faster and require less data, in-situ analysis

that analyzes the data where it is generated, and reducing the size of data through lossless

or lossy compression. This work focuses on the last approach: reducing data size through

lossy compression. Of the above approaches, lossy compression has the most potential

for the largest impact: it is possible to reduce the storage and data movement time by

several orders of magnitude, making it possible to visualize and analyze data on consumer

computers instead of clusters or supercomputers.

The input data forms the foundation of the analysis that is to be conducted. The finite

set of data points form a discrete sampling of space, meaning that the data represents a

discrete and limited representation of a larger, continuous phenomenon. Each data point

is associated with a vector of real-value quantities, which can represent various physical,

chemical or biological properties of the phenomenon being studied. The data points can

come from a variety of sources. For instance, they can be discrete samples of a solution to a

partial differential equation, which describes the behavior of a physical system in terms of

mathematical relationships between variables. On the other hand, the data points can also
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be discrete samples of an image taken by a scanning or imaging device, such as a CT scan

or a microscope image. If we define the resolution of a discrete sampling of a dataset as the

density of the sampling points (finer resolution means denser sampling), and the precision

of the same dataset to be the number of bits used to represent the data value at each sample

point, then lossy compression of the dataset often means reducing its resolution and/or its

precision.

To illustrate the effectiveness of lossy reduction in precision and resolution, consider Fig-

ure 1.1 and Figure 1.2, which demonstrate that volume rendering and isocontour extraction

can be performed at reduced precision and resolution without significant loss in the results.

This is not surprising since volume rendering and isocontour extraction are lossy processes

themselves, in that they map the input data into outputs that contain only a fraction of

the original information. In fact, most data analysis procedures (e.g., the ones mentioned

in Section 1.2 are lossy: while computers and instruments can certainly generate and

capture fine-scale phenomena over a large spatial volume or area, in order for humans to

comprehend and make sense of the resulting data, it cannot be presented in raw form all

at once, but has to be reduced, simplified, or summarized. Data visualization is a typical

example: a 3D dataset is rendered to a 2D screen (of typically less resolution) and its samples

mapped to color values (of much less precision) for visualization purpose. This process

alone involves three forms of data reduction, in dimensionality, precision and resolution.

It makes sense therefore, to avoid transferring and loading the entire data into memory

before performing analysis. Instead, data reduction should happen before analysis, with

each analysis task ideally loading only the subset of data that it truly needs.

To answer scientific questions with required accuracy, not every bit of data is necessary.

In particular, for techniques at the end of scientific workflows, such as visualization

and data analysis, lower fidelity representations of the data often provide adequate

approximations [91, 152, 315]; even during simulation, some loss in precision is often

acceptable [32, 152]. As a result, several different techniques have been proposed to reduce

the size of data. Reducing data size and fidelity primarily takes two forms: reducing

resolution (i.e., number of data points) and reducing precision (i.e., the number of bits

representing each data value). Generally, both types of techniques transform the original

data into multiple “levels”, such that meaningful information is disproportionately more
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concentrated in the first few levels, leaving subsequent levels with inessential information

to be discarded. For resolution-based techniques, these levels often manifest in the form

of a tree [251], a hierarchical space-filling curve [223], adaptive mesh refinement [19],

octrees and other tree structures [250], or a wavelet hierarchy [315]. With precision-

based techniques, data samples are often decorrelated to form levels of precision, e.g.,

with energy concentration transforms [16, 69], followed by quantization to truncate away

lower order precision levels (e.g., least significant bit planes). Some of the most well-

known quantization-based compressors for scientific data are ISABELA [150], ZFP [169],

FPZIP [171], SZ [58, 164, 165, 280, 323], VQ [209], SQ [128], HVQ [256], and TTHRESH [12].

Traditionally, multiresolution structures have been used to accelerate dynamic queries, e.g.,

in rendering [151], since discarding data points based on the viewpoint or data complexity

can result in significant speed-up. Compression based on quantization, on the other hand,

is more common when storing data, where in the absence of other information, treating

each sample as equally important is the null hypothesis.

1.4 Problem statement
Most existing data reduction methods are designed for a single purpose, thus they

consider very narrow sets of trade-offs. Precision-based compression methods mostly focus

on optimizing for data size, most of the time at a single rate, requiring data to be fully

decompressed at the finest resolution to be usable. This often means the data can only

be decompressed on hardware similar to what was used to compress the data in the first

place, significantly limiting the usability of the compressed data. On the other hand, while

resolution-based reduction methods often allow level-of-detail access to the data using

less powerful hardware, most do not employ very effective precision-based compression

schemes, and most also are only suitable for visualization purposes. The end result is that

in practice, scientists are often left with no tool to interactively work with terabyte-size

data using the conventional hardware that they use everyday, and must resort to using

much larger machines with roundtrip times on the order of weeks and often with the

indispensable help of the computer scientists.

Furthermore, in many situations, a combination of both resolution and precision

reduction may be appropriate. For example, high spatial resolution may be needed to
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resolve the topology of an isosurface, yet the corresponding data samples may be usable at

less than full precision to adequately approximate the geometry. Conversely, accumulating

accurate statistics may require high-precision values, yet a lower resolution subset of data

points may be sufficient for the task. Toward enabling interactive visualization and analysis

of tera-scale datasets, this thesis considers the problem of compact encodings for large

scientific data more holistically, since this is really a multi-objective optimization problem.

There are multiple challenges to this problem:

• Multiresolution and multiprecision access. Multiresolution access refers to the

ability to reconstruct low-resolution approximations of the data by fetching a subset

of the bits. Not only multiresolution access enables multiscale analysis important for

many scientific analyses due to features and phenomena happening at different scales,

but it can potentially reduce the amount of data fetched by orders of magnitude by

greatly reducing the number of discrete sample points. To fully take advantage of

multiresolution access, however, the resolution must be able to vary across space so that

it can adapt to the data. Similarly, multiprecision access allows fetching subsets of the

bits to reconstruct a low-precision approximation of the data. This is useful since most

analysis tasks do not need the precision at which the data was generated and possibly

stored. The precision should also be allowed to vary across space to really adapt to

features of the data. While precision-based reduction and resolution-based reduction

works well on their own, there is great potential for combining both approaches

to achieve even better compression. However, precision-based compression often

require grouping and quantizing neighboring samples exploit their spatial coherency,

while to reduce resolution is to discard neighboring samples to reduce the sampling

rate. This inherent conflict is perhaps a reason why most resolution-based reduction

methods are not combined with a competitive precision-based quantizer.

• Progressive access. This refers to the ability to generate gradually better appoximations

of the data by fetching and decoding more bits. This capability is important, since

it is difficult to know in advance at what precision or resolution the user scientists

would need to perform their tasks under given time and resource constraints. A

crude overview of the data for exploration purpose done on a laptop may need
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very coarse resolution and precision, but a more complex workflow with involved

calculations on the data may require approximations with much higher fidelity.

Therefore, the ability to refine approximations without re-fetching or re-decoding

data is crucial. Progressive encoding is in contrast to single-rate encoding, which most

lossy compressors for scientific data employ, presumably due to the latter’s relative

simplicity. With progressive access, scientists are not stuck to a single quality, and

also not having to choose this quality from the beginning. When needed, the current

approximation should also improve in either precision or resolution independently.

This is a challenge in the presence of compression, since many compression techniques

often leverage the relative difference in magnitude between data samples at different

resolution levels, hence these levels are coupled and compressed together.

• Speed and memory requirements. To support progressive updates, certain states

must be maintained in memory so that the decoder knows how to resume. Depending

on the encoding scheme, these states maintained for progressive access and decoding

can be very large, to the point that they can dwarf the actual decoded data. A useful

decoder should not only be light in memory but also be fast, while not sacrificing too

much compression effectiveness. These two goals are usually in conflict because better

compression ratio is often achieved by making the compressor more complex, hence

slower. For speed, a crucial property for a decoder running on modern machines is the

support for parallelism, e.g., the data is compressed in blocks that can be independently

decompressed in parallel. However, this reduces the effectiveness of compression,

and often results in blocky artifacts at the block boundaries during reconstruction.

• Adaptivity to analysis tasks. Different analysis tasks need different subset of the

input data, hence it is important to identify such subsets given an analysis task at

hand, to avoid accessing and transferring more data than necessary. Given that a

reduction model that combines resolution and precision, there is a need to determine

the trade-off between more resolution (and less precision) or vice versa for any given

analysis task. There is currently a lack of formal framework to reason about this

resolution-precision trade-off; for example, when comparing precision reduction and

resolution reduction at the same data size budget of, say, one-third the original, it
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is relatively easy use a third the number of precision bits, but it is unclear what

the equivalent reduction in resolution is. To quantitatively evaluate this trade-off,

and in general, to progressively identify the set of bits best for a given analysis task

given a size constraint, it is necessary to define an error metric for each task. This is

highly nontrivial, since for most tasks there is no agreed-upon standard error metric,

especially one that correlates highly with human perception. Even when an error

metric is defined, it is unclear how to quickly identify the best bits that will minimize

this metric (a problem akin to rate-distortion optimization in the lossy compression

literature) and then communicate this set from the encoder to the decoder without

using a significant amount of extra bandwidth.

• Subset accesses. Even when such a subset of bits that best serve an analysis task at

hand can be identified, it is difficult to just read these bits from the storage without

touch other bits. This is because most storage mechanisms are block-based, so data is

read in blocks of at least several kilobytes. As such, the order in which bits are laid

out on disk and how they are grouped together to form larger I/O units are crucial to

minimize the I/O overhead of fetching unwanted bits. A scientist user may issue very

fine-grain queries in resolution and/or precision queries, e.g., a query that asks for

specific resolution and precision levels, in which case it is desirable for the data layout

to allow reading just those levels from disk. The desired resolution can also vary in

dimensions: a query may request for denser data samples along certain dimensions

of the data than others. Beside resolution and precision, the user often also wants

subsets of data restricted to certain spatial extents (i.e., regions of interest), or certain

data value range extents (e.g., isocontour extraction). Since the bits can only be stored

in a single layout serving multiple such varied access patterns, the challenge is how

to design the layout to serve the common patterns well enough, since obviously it is

impossible for a single layout to best serve any access pattern.

• Local and remote access. It is rare that large-scale datasets are copied from one storage

to another due to the high cost of doing so. Thus, the subdomain, subrange, and

on-demand accesses all have to support both efficient local and remote accesses of the

data. The main challenges with remote access is that unlike local access, one cannot
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rely on relatively fine-grained random access to locations inside a file to be efficient, or

even supported. For example, many cloud-based object storages only support reading

whole files and do not allow querying data chunks within a file. A data layout that

divides the data into smaller chunks faces the challenge of choosing a single chunk

size that works well for both cloud and local accesses, which may not exist. Cloud

access also prevents the layout from solely relying on pointers (or offsets) to locate the

data chunks, as some form of address must be used instead. For local access, offsets

may still be needed in addition to addresses, however, if a variable-rate compression

scheme is used, since the chunks may not all have the same size. Finally, unlike local

access, one must also take into account the nonnegligible cost of network latency: it is

desirable to not only reduce the request size in bytes, but also to reduce the number of

requests.

• On-demand access. Most compressors for scientific data require the data to be fully

decompressed before use. This severely limits the usability of the compressed data,

since the decompression process is often slow and the decompressed data often

does not fit in memory. In practice, this means that compression is used purely as

a storage-saving solution and not much else. Ideally, decompression should only

happen just before the user accesses a particular chunk of data, and should not be run

for the whole dataset prior to usage. From the user’s perspective, this on-demand

decompression should happen transparently in the background without explicit

triggers from the user. For performance reason, this often means an in-memory cache

is used to store recently decompressed data in case it is accessed again in the future so

that the decompression cost is amortized over many accesses. The challenge is, then,

how to design this cache so that memory usage and performance are balanced.

1.5 Contributions
To address the above challenges, this thesis makes several technical contributions.

1.5.1 Hierarchical model unifying resolution and precision

Working individually with either precision-based reduction or resolution-based reduc-

tion limits the achievable computational gains by maintaining either all bits for a few values
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or a few bits for all values. I show that both, previously separated, hierarchies can be

combined into a single more general hierarchy, called a precision-resolution tree — a model

that unifies the representation of spatial resolution hierarchies with precision-based data

quantization approaches. In this model, adaptive approximations of data are modeled with

the classical notion of a valid cut of the precision-resolution tree. Making both dimensions of

possible data reduction available in a single, unified model lifts the proposed approach out

of the 1D reduction spaces, where most existing techniques operate (see Figure 1.3), thus

ushering in new opportunities for different mixes of resolution and precision, which have

been shown [114] to benefit different types of analysis tasks. In addition, I also analyze

the trade-offs associated with different choices in the degrees of freedom of this family of

layouts and show how one can reproduce classical encoding schemes or design new ones

with the advantage of being able to compare all within the same framework.

1.5.2 Compact encodings and layouts for progressive queries

To realize a precision-resolution requires a compact encoding scheme and a data layout

that can efficiently serve data queries needed to perform scientific analysis. Since different

analysis tasks need different data subsets, the design of the encoding and layout must be

flexible and cannot be optimized purely for compression performance alone. Toward these

goals, I formalize a complete family of parameters for practical data layouts that encode

such trees in the presence of compression and other practical considerations. My proposed

encoding and layout allows the flexibility of arbitrary incremental retrieval of “chunks”

of data, progressively improving the resolution and/or precision of data. Furthermore,

such data chunks can be retrieved without excessive time overhead (e.g., due to complex

decoding) or data overhead, such as re-reading of data (e.g., due to a lack of progressivity)

and/or reading or decoding of unused data (e.g., due to a lack of random access). I propose

not a single data layout, but a new, highly flexible framework that can be leveraged to

design novel, mixed-reduction strategies. I also provide an empirical study, including

system-level considerations, that allows designing a new encoding scheme for scientific

data, which achieves competitive speed, memory usage, and compression rates. These are

achieved through choices of the framework’s parameters that lean toward high degrees

of progressivity and random access in all three domains — precision, resolution, and space
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— while achieving performance comparable to that of state-of-the-art pure compression

techniques. My scheme allows decoding the data progressively while following different

precision-resolution trade-off curves decided at read time, per the needs of the application

(Figure 1.4).

1.5.3 Optimal progressive streams for data analyses

In general, different levels of adaptivity in combinations of resolution and precision

may be suitable for different types of analysis and visualization tasks, and for many, these

requirements might be data dependent. Consequently, a globally optimal data organization

may not exist. Instead, I consider a progressive setting in which some initial data is

loaded and processed, and new data is requested selectively based on the requirements

of the current task as well as the characteristics of the data already loaded. The result is

a stream of bits ordered such that the error is minimized, considering the task at hand.

However, although intuitively considering both resolution and precision in the ordering

certainly has advantages, it is unclear how much the error could be reduced for a given

data budget or how little data could be used to achieve the same error. Furthermore,

optimal data-dependent orderings may be especially impractical since they assume perfect

knowledge of the data. It is therefore important to understand which of these potential

gains are realizable, and address these problems about the suitable bit orderings through

extensive, empirical experiments.

To address these issues, I introduce a framework that allows systematic studies of the

resolution-versus-precision trade-off for common data analysis and visualization tasks. The

core idea is to represent various data reduction techniques as bit streams that progressively

improve data quality in either resolution or precision (Section 6.1). I can thus compare these

techniques fairly, by comparing the corresponding bit streams (see Figure 1.5). I also provide

empirical evidence that jointly optimizing resolution and precision can provide significant

improvements on the results of analysis tasks over adjusting either independently. I present

a diverse collection of data sets and data analysis tasks and also show how different types of

data analysis might require substantially different data streams for optimal results. Finally,

I present a greedy approach that gives estimations for lower bounds of error for various

analysis tasks. In addition, I also identify practical streams that closely approximate these
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bounds for each task (Subsection 6.3.1, Subsection 6.3.2, Subsection 6.3.5, and Subsection 6.3.6)

using a novel concept called stream signature (Subsection 6.2.2), which is a small matrix that

captures the essence of how a bit stream navigates the precision-versus-resolution space.

1.5.4 Efficient tree-based progressive compression of particles

Beside regular grids, a common discrete representation is particles, which are moving

points in space that carry attributes. Particles are frequently used in scientific applications,

including molecular dynamics [101, 156, 198], fluid dynamics [5, 265, 322], computational

cosmology [85, 108, 253], imaging of objects and environments [4, 142, 187], and plasma

physics [30]. In a progressive setting, reconstruction quality depends greatly on the order

in which the particle position bits are decoded, which also affects the costs of keeping a

state in memory for resuming the decompression. Achieving a balance between decoding

costs and reconstruction quality often manifests as a choice between (1) spatially limited but

complete representation of particles and (2) quantized but uniform coverage of space — or,

in a way, between a depth-first (DT) and a breadth-first traversal (BT) of a particle hierarchy. I

explore this trade-off from the perspectives of both tree traversal and tree construction.

At the center of these contributions is a node splitting scheme called odd-even split, which

I utilize to construct novel hierarchies that can be traversed with asymptotically constant

memory footprints to produce high-quality progressive approximations (see Figure 1.6).

The odd-even split (Section 7.1.1.2), which can be used in conjunction with the standard k-d

splits (i.e., splits that create a k-d tree) to selectively convert a DT of a subtree in to BT of the

corresponding space. The odd-even splits can be combined with the traditional k-d splits to

create hybrid trees (Section 7.1.1.3) that allows a low-memory-footprint DT to also have the

power of BT (high-quality reconstruction), while being conducive to compression. A novel

adaptive traversal scheme (AT) (Subsection 7.2.1) can be used to traverse particle trees that

allows dynamic guiding of tree refinement, with respect to a given error metric; I propose

two such metrics by heuristics. In addition, I introduce block-hybrid trees (Subsection 7.1.2),

which combine the strengths of both k-d trees and hybrid trees, to be traversed with

block-adaptive traversal (BAT, Subsection 7.2.2), for improved memory-quality trade-off and

error-guided, progressive refinement with random access. For tree node encoding, I propose

a binomial coding scheme (Subsection 7.3.1) that improves the compression of uniformly
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distributed particles by modeling the distribution of child node values using the Binomial

distribution. Finally, I present an odd-even context coding scheme (Subsection 7.3.2) that

improves the compression of dense surface data by leveraging the similarity between the

two subtrees under an odd-even split.

(a) 64 bits (b) 12 bits

Figure 1.1: Volume renderings of a combustion simulation 512× 512× 256 dataset, using (a)
64 bits and (b) 12 bits of precision. There are no appreciable differences between the two
pictures.

(a) Full resolution, 5123 (b) Resolution 2563 (c) Resolution 1283 (d) Resolution 643

Figure 1.2: Isocontours extracted from a combustion dataset at different sampling rates.
The information loss is minimal even at the lowest sampling rate (643 in d).
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Figure 1.3: Considering precision and resolution as two axes in the space of data reductions.
(Left) Previous approaches operate either as fixed points or fixed progression curves in this
space. (Middle) The proposed unified tree model supports multiple arbitrary progression
curves simultaneously with one data layout, effectively covering the entire space. (Right)
Reducing too much precision causes banding (A). Reducing too much resolution results
in pixelization (B). This work explores how flexible combinations find better quality at
comparable sizes (C).
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Figure 1.4: In the proposed encoding, each progressive decoding traces a monotonic
nondecreasing curve in the precision-resolution space from the origin, 0%, to the full data,
100%. The time to decode the data and RAM used are shown; data retrieved values are
inclusive of the preceding points along the curve. Decoding uses one core on a 4-core laptop
CPU (2.8 GHz Intel Core i7-7700HQ) and a 122 MB/s consumer hard drive.
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Figure 1.5: Visualization of the diffusivity field at 0.2 bits per sample (bps) and its Laplacian
field at 1.5 bps, using two of the bit streams studied in this work. Compared to the by bit plane
stream, the by wavelet norm stream produces a better reconstruction of the original function
(left, compare white features), and a slightly worse, if not comparable, reconstruction of the
Laplacian field (right).
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(a) 138×, n = 33M (b) 46×, n = 106M (c) 23×, n = 215M

Figure 1.6: Three approximations of a detonation-large simulation dataset, compressed and
then decoded with my block-hybrid tree approach (compression ratio k× and corresponding
number of particles, n, given). All three are snapshots of a single progressive decompression
process, and all use only 50 MB for decoding.



CHAPTER 2

BACKGROUND

Here, I review the background needed to formally study and quantitatively analyze

(lossy) data compression techniques.

2.1 Data compression theory
This section gives the necessary background on information theory [260], the theoretical

foundation for data compression. We consider the data to compress to be a sequence of

symbols) sss = {si}, represented in some standard binary format. Compression, or source coding,

is the process of mapping sss to a compressed binary sequence bbb, which hopefully requires less

storage than sss. When the original data is needed, bbb is decompressed to obtain a reconstructed

sequence sss′. The compression/decompression process is considered lossless if sss and sss′ are

identical, otherwise it is considered lossy. Our discussion will focus on lossy compression,

where the main problem is to minimize the difference between the decompressed sequence

sss′ and the original sequence sss, often under constraints on the size of the compressed binary

sequence bbb.

2.1.1 Information theory

Information theory builds upon probability theory to establish theoretical bounds on

the compression of the source sequence sss. In particular, we model the input sequence of

symbols sss as being generated by a random process (or a source) SSS. We use pi(x) to denote

the probability mass function (pmf) of Si. In addition, pi,N(xxxi,N) refers to the joint pmf of N

successive samples {Si+1, Si+2, . . . , Si+N}. Similarly, pi,N+1|N(xxxi,N+1|N) refers to the conditional

pmf of Si+N+1 given its previous N samples. As is customary in the literature, we only

consider stationary random processes, where pi,N(xxxi,N) does not depend on i. Thus, every

Si is now just S (all samples are identically distributed), pi,N(xxxi,N) becomes pN(xxxN), and

pi,N+1|N(xxxi,N+1|N) becomes pN+1|N(xxxN+1|N). We sometimes use even simpler notations, i.e.,
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p(xxxN) and p(xxxN+1|N), if there is no ambiguity. If, in addition to being identically distributed,

the samples {Si} are also independent, then SSS is called an independent and identically distributed

(i.i.d), or memoryless, source.

2.1.1.1 Entropy

A code is a function Γ(sss) that maps an input sequence sss to an output binary sequence bbb.

We want to be able to decode bbb to get back sss (i.e., decompression). Therefore, Γ must be a

uniquely decodeable code, that is, no two different inputs produce the same output. Assuming

that Γ assigns a code γk of length |γk| bits to each letter ak in the alphabet A, a necessary

condition for uniquely decodeable codes is the Kraft-McMillan inequality [140, 193]:

1 ≥ K =
∑
ak∈A

2−|γk | (2.1)

The bit rate (or expected code length in bits per symbol) for this code is

E(|γk|) =
∑
ak∈A

P(S = ak)|γk| (2.2)

Using K in Equation 2.1, we can rewrite E(|γk|) as− log2 K +A+H, where A is non-negative

and H = −
∑

P(S = ak) log2 P(S = ak) bits per symbol. Since K ≤ 1 and A ≥ 0, E(|γk|) is

bounded below by H, which is called the (first-order) entropy of the stationary random

process SSS (or the entropy of the random variable S). The entropy H1(SSS) is the lower bound

on the achievable bit rate for any code for SSS that codes each symbol independently of other

symbols. If p(x) denotes the pmf of S, i.e., p(ak) = P(S = ak), then

H1(SSS) = H(S) = −
∑
x∈A

p(x) log2 p(x) (2.3)

Entropy is always non-negative, and measures the uncertainty about S; among all random

variables with the same alphabet size, L, the uniform distribution (p(x) = 1/L) has the

maximum entropy H = log2 L.

We can also define the joint entropy and conditional entropy of two discrete variables S, T

with alphabetsAS,AT and joint pmf p(x, y):

H(S, T) = −
∑

x∈AS,y∈AT

p(x, y) log2 p(x, y) , and

H(S|T) =
∑

y∈AT

p(y)H(S|y) = −
∑

y∈AT

p(y)
∑

x∈AS

p(x|y) log2 p(x|y)
(2.4)
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The joint entropy and conditional entropy can be used to define the N-th order entropy

and N-th order conditional entropy of a stationary discrete source:

HN(SSS) = H(SSSN) = −
∑

xxxN∈AN

p(xxxN) log2 p(xxxN) , and

Hc,N(SSS) = H(SN+1|SSSN) =
∑

xxxN∈AN

p(xxxN)H(SN+1|xxxN),
(2.5)

where SSSN stands for any N successive samples in SSS, with joint pmf p(xxxN).

Both 1
N HN(SSS) and Hc,N(SSS) are non-increasing functions of N, and both converge to the

same limit as N tends to infinity. We define the entropy rate of SSS to be this limit:

H(SSS) = lim
N→∞

1
N

HN(SSS) = lim
N→∞

Hc,N(SSS) (2.6)

It can be shown that

HN(SSS) = H1(SSS) +
N−1∑
n=1

Hc,n(SSS) , and

H(SSS) ≤ Hc,N−1(SSS) ≤
1
N

HN(SSS) ≤ H1(SSS),

(2.7)

with equalities happening when SSS is i.i.d. In other words, H(SSS) provides the lower

bound for the bit rate when coding SSS losslessly, which can be achieved only when infinitely

many symbols are coded together (N→∞). Furthermore, for non i.i.d sources, conditioning

on previous symbols and coding many symbols together are better than coding symbols

individually.

2.1.1.2 Mutual information

Given two discrete random variables S and T, the “intersection” between H(S) and H(T)

is called the mutual information between S and T, formally defined as

I(S, T) = H(S) −H(S|T) = H(T) −H(T|S) =
∑

x∈AS,y∈AT

p(x, y) log2
p(x, y)

p(x)p(y)
(2.8)

I(S, T) gives the reduction in the uncertainty of S given the knowledge of T and vice versa

(note that when S = T, I(S, S) = H(S)). Several relations between entropy, joint entropy,

conditional entropy, and mutual information exist; I list some of them below (they can all

be remembered by thinking of I(S, T) as the intersection of H(S) and H(T), and H(S, T) as

their union, as if they were sets).
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H(S, T) = H(S) + H(S|T) = H(T) + H(T|S)

I(S, T) = H(S) −H(S|T) = H(T) −H(T|S)

I(S, T) = H(S) + H(T) −H(S, T)

I(S, T) ≤ H(S) and I(S, T) ≤ H(T)

H(S) ≥ H(S|T) and H(T) ≥ H(T|S)

(2.9)

The last relations say that conditioning reduces entropy. As before, the N-th order mutual

information can be defined between two discrete stationary sources:

IN(SSS,TTT) =
∑

xxxN∈A
N
S ,yyyN∈A

N
T

p(xxxN, yyyN)

p(xxxN)p(yyyN)
(2.10)

, where p(xxxN, yyyN) denotes the joint pmf of N successive samples in SSS and N successive

samples in TTT. I will use IN(SSS,TTT) later when discussing the lower bound on the minimum

bit rate required for achieving a desired distortion between the original source (SSS) and its

quantized version (TTT).

2.1.1.3 Bit rate bounds for lossless coding

Consider coding a discrete stationary source SSS with alphabet A using a code γ that

assigns a binary sequence γi to each symbol {ai} ofA individually. Let

R1(SSS,γ) =
∑
ai∈A

p(ai)|γi| (2.11)

denote the bit rate (average number of bits per symbol) of this code (the subscript 1 indicates

that the symbols are coded one at a time). We want to understand how low this bit rate can

be as a function of the code γ. Let R1(SSS) = minγ R1(SSS,γ). We can bound this minimum rate

using the (first-order) entropy of SSS as

H1(SSS) ≤ R1(SSS) ≤ H1(SSS) + 1 (2.12)

The lower bound is achieved if, for all ai ∈ A, p(ai) = 2−|γi| (i.e., none of the |γi| bits assigned

to code ai is “wasted”).
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To reduce the bit rate further, we can treat each group of N samples as a vector, and

assign one codeword for each vector. Applying the same bound above to the vector source

and dividing by N (to obtain the average bit length per symbol), we have

HN(SSS)
N

≤ RN(SSS) ≤
HN(SSS)

N
+

1
N

(2.13)

In the limit, limN→∞ RN(SSS) = limN→∞
HN(SSS)

N = H(SSS). This means that as N increases, the

minimum bit rate can get arbitrarily close to the entropy rate of the source. For conditional

lossless coding, we have similar bounds:

H(SSS) ≤ lim
N→∞

Rc,N(SSS) ≤ H(SSS) + 1 (2.14)

Compared to the bounds for vector coding, the minimum bit rate for conditioning on

previous symbols has the same asymptotic lower bound that is the entropy rate However,

the upper bound does not converge to the same entropy rate, but is always 1 bit larger due

to the fact that each symbol is still being coded individually.

2.1.1.4 Bit rate bounds for lossy coding

In lossy coding, the reconstructed sequence is not the original sequence sss itself, but

some approximation sss′. To quantify the approximation error, we need to define a distance

function d(sss, sss′) which tells us how much sss′ differs from sss. Let d(si, s′i ) denote a (non-negative)

distance between two real values si and s′i (common examples for d are the absolute error

|si − s′i | and the squared error (si − s′i )
2). We define the distortion between the original vector

sss and its reconstruction sss′ as:

d(sss, sss′) =
1
|sss|

|sss|∑
i=1

d(si, s′i ) (2.15)

Like with sss, we model sss′ as an instance of a random source SSS′ with alphabet A′. To

define a distortion between two sources SSS and SSS′, we average over all possible vectors xxxN

and xxx′N of a fixed length N:

dN(SSS,SSS′) =
∑

xxxN∈AN

∑
xxx′N∈A

′N

p(xxxN,xxx′N)d(xxxN,xxx′N) (2.16)

Unlike in lossless coding where only the rate is of concern, in lossy coding, there is a trade-off

between the rate and the distortion: the higher the rate, the lower the distortion and vice

versa. Consider a random process SSS′ such that dN(SSS,SSS′) ≤ D for some given distortion
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threshold D. Any code for SSS′ needs to have a rate that is greater than or equal to the entropy

rate H(SSS′) = limN→∞
HN(SSS)

N , which itself is bounded below by limN→∞
IN(SSS,SSS′)

N . Therefore,

the minimum rate R required to achieve a distortion no larger than D is bounded below by

the same quantity:

R(D) = lim
N→∞

inf
dN(SSS,SSS′)≤D

IN(SSS,SSS′) (2.17)

R(D) is called the rate-distortion function; it is continuous, monotonically decreasing for

R > 0, and convex. It may seem surprising that we are minimizing the mutual information

between SSS and SSS′ (instead of maximizing this quantity so as to minimize the error between SSS

and SSS′). However, this result should be understood in the sense that, among all the choices

of SSS′ with distortion at most D, the one having the least mutual information with SSS requires

the lowest bit rate.

Replacing IN(SSS,SSS′) with HN(SSS) − HN(SSS|SSS′) = HN(SSS) − HN(SSS − SSS′|SSS′), we obtain the

Shannon’s lower bound:

R(D) ≥ RL(D) = H(SSS) − lim
N→∞

sup
dN(SSS,SSS′)≤D

HN(SSS−SSS′|SSS′) (2.18)

This result implies that for an ideal code, the error process SSS −SSS′ should be statistically

independent from the reconstructed source SSS′. It is not possible to determine the Shannon

lower bound analytically for most sources and distortion measures. However, for stationary

sources and the mean-square-error (MSE) distortion, the distortion dN(SSS,SSS′) is equal to the

variance of the error process EEE = SSS−SSS′, and it can be shown that the maximum N-th order

(differential) entropy for EEE with variance σ2 is N
2 log2 2πeσ2. Hence, the Shannon lower

bound for stationary processes and MSE distortion is:

RL(D) = H(S) −
1
2

log2 2πeD, or, equivalently,

DL(R) =
1

2πe
22H(S)2−2R

(2.19)

Among sources with the same variance, a Gaussian source requires the highest bit rate

(equal to RL(D)) to satisfy the same distortion criterion. For any source, the optimal code

that achieves the R(D) bound is one that produces i.i.d. Gaussian errors with variance D.

The (differential) entropy of the error source in that case is 1
2 log2 2πeD, and the lower bound

RL(D) becomes the difference between the entropy of the source and that of the error. If
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SSS itself is an i.i.d. Gaussian process with variance σ2, the rate-distortion function can be

found analytically as

R(D) =
1
2

log2
σ2

D
, or, alternatively, D(R) = σ22−2R (2.20)

2.1.2 Quantization

Quantization is the most common way to realize lossy coding, where a function Q (the

quantizer) maps the N-dimensional Euclidean space into a finite set of reconstruction values

inside the N-dimensional Euclidean space Q : RN
→ {sss′0, sss′1, . . . , sss′K−1}. If the dimension N

is equal to 1, Q is a scalar quantizer, otherwise it is a vector quantizer. K is also called the

size of the quantizer Q. Q partitions RN into quantization cells Ci (0 ≤ i < K) such that each

cell is associated with a reconstruction vector: Ci = {sss ∈ RN : Q(sss) = sss′i }. A quantizer is

completely defined by the set of reconstruction values and the associated quantization cells.

We consider the quantization of a sequence of input vectors {sssi} that is a realization of a

vector random process {SSSi}. Each input vector sssi is mapped onto a reconstruction vector

sss′i = Q(sssi). If SSSi is stationary, the expected distortion between the input and the output

vectors depends only on SSS and Q:

DQ(SSS) = E[dN (SSS, Q(SSS))] =
∑

i

P(Ci)

∫
Ci

dN (sss, Q(sss)) p(sss|Ci)dsss (2.21)

where P(Ci) is the probability that sss falls in cell Ci, and p(sss|Ci) is the conditional pdf of sss

given that sss ∈ Ci.

2.1.2.1 Uniform scalar quantization

The simplest type of quantization is scalar quantization with uniform step size. That is,

the cells Ci become half-open intervals of equal sizes [bi, bi+1) where ∆ = bi+1 − bi is the step

size. The interval endpoints {bi} are also called the decision boundaries. For general inputs,

having a constant step size is not possible, since the finite set of quantization intervals

must cover the whole real line from −∞ to∞. However, many real-world input signals can

be bound by an amplitude range [smin, smax], for a dynamic range of A = smax − smin. The

dynamic range can then be partitioned into K quantization cells with step size

∆ =
A
K

= 2−RA (2.22)
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where R = log2 K is the bit rate (the number of bits required to specify the quantization

cells). A common quantizer of this type is called Pulse-Code-Modulation (PCM), where the

reconstruction values are placed in the middle of the quantization cells, namely

Q(s) =
⌊s− smin

∆
+

1
2

⌋
∆ + smin (2.23)

Assuming the source is uniformly distributed between [smin, smax], and that the distortion

metric is the mean-square error (MSE), we can rewrite the distortion in Equation 2.21, which

is now also the variance of the quantization error (denoted as σ2
Q), as

σ2
Q = DQ(S) = E[(S−Q(S))2] =

∑
i

P(s ∈ Ci)

∫ bi+1

bi

(s− s′i )
2p(s|Ci)ds (2.24)

The above equation can be alytically computed to be

σ2
Q = D(R) = σ22−2R, (2.25)

where σ2 = A2

12 is the variance of the original source. Equation 2.25 relates the variance of

the quantization error to the variance of the original source. The signal-to-noise ratio (SNR)

of the quantizer is defined as the logarithm of the ratio between the two variances:

SNR = 10 log10
σ2

σ2
Q

= (20 log10 2)R ≈ 6.02R (2.26)

Thus, every additional bit results in a 6.02 dB gain in SNR – a well-known result in

quantization theory [211].

2.1.2.2 Optimal scalar quantization

From the definition of the distortion D (or equivalently signal-to-noise ratio SNR), it

is clear that for a source that is not uniformly distributed, the uniform scalar quantizer

produces suboptimal expected distortion. A better quantizer should be adaptive, that is, it

should take into account the actual probability density of the input. Intuitively, we want the

quantizer to allocate more output levels where the pdf p(x) is more dense. One effective

technique to study such nonuniform quantizer is to model it as a combination of a nonlinear

function F(x) (the “compressor”), followed by a uniform quantizer [18]. That is, the input

signal is first transformed by F(x), then uniformly quantized. Function F is monotonic,

therefore is invertible, and F−1 is used on the decompression side. The distortion for the
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nonuniform quantizer is D = V2

3N2

∫ V
−V

p(s)
F′(s)2 ds (V, known as the overload, specifies the range

of the quantizer) [18]. Given an input probability density, this formula can be minimized

over all compressor curves F′(s) to give the result that the optimum compressor slope

is proportional to the cube root of the pdf p(s), i.e., the optimal compressor function is

F∗(s) = c
∫ s

0 (p(α)1/3dα (c is a constant chosen so that F(V) = V).

Alternatively, to obtain an optimal quantizer at a given number of cells, we can minimize

the distortion D as a function of both the decision boundaries {bi} and the reconstruction

values {s′i }. In Equation 2.24, setting both partial derivatives ∂D/∂bi and ∂D/∂s′i to 0 as

in [190], we obtain

bi =
s′i + s′i+1

2

s′i = E(S|Ci) =

∫ bi+1

bi

p(s|s ∈ [bi, bi+1))sds
(2.27)

These two conditions mean that the optimal decision boundaries {bi} are exactly between

neighboring reconstruction values (the nearest neighbor condition), and simultaneously, the

reconstruction values {s′i } are the centroids of their respective intervals (the centroid condition).

If the distortion metric is not the MSE, the nearest neighbor condition still holds, but the

notion of a centroid in the centroid condition depends on the distortion function. For

example, if d(s, s′) = |s− s′|, the centroid of each cell Ci is the median value in Ci. The MSE,

however, also equalizes the quantization error among the quantization cells, among other

important statistical properties [89, 130].

The MSE quantizer for a uniform source is uniform (i.e., the solution given by Equa-

tion 2.23), but for a nonuniform source, the best MSE quantizer cannot in general be

determined by a close-form formula. In practice, the distribution of the input signal is

usually unknown. For such cases, the quantizer can be designed based on a training

set of representative input samples. A popular algorithm of this type is the Lloyd-Max

algorithm [177,190], which iteratively updates both the reconstruction values and the decision

boundaries. First, the reconstruction values are found using the centroid condition, then

the decision boundaries are found by partitioning the training samples using the nearest

neighbor condition. The same process repeats until convergence. For finite inputs, this

algorithm is also known as the k-means clustering algorithm, independently discovered by

Forgy [80].
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2.1.2.3 Entropy-constrained optimal scalar quantization

The Lloyd-Max algorithm minimizes the distortion for a given number of quantization

cells, assuming that every cell is coded with a codeword of constant length. If the

quantization cells are encoded with variable-length codes, however, we need to optimize

for the rate and the distortion together. Denote l̄(s′i ) as the average code length assigned to

s′i , then the average bit rate is given by R =
∑

p(s′i )l̄(s
′i). We want to minimize R subject to

D ≤ Dmax: This can be reformulated as an unconstrained minimization problem, using the

Lagrange multiplier λ, by minimizing J = D + λR:

J = E[d(S, Q(S))] + λE[l̄(Q(S))] (2.28)

If there exist a λ for which J is minimized when D = Dmax, then the corresponding R

is a solution for the original minimization problem. If the decision boundaries {bi} are

given, the optimal reconstruction values {s′i } are determined by minimizing the distortion D

alone; therefore, they are given by the generalized centroid condition (Equation 2.27). It is

reasonable to approximate the average rate R by the (first-order) entropy H(S), and set the

average code length l̄(s′i ) to− log2 p(s′i ). Then, to find the optimal decision boundaries {bi}, we

assume {s′i } and {l̄(s′i )} are given, and solve for Q(s), using the augmented nearest-neighbor

condition:

Q(s) = arg min
s′i

d(s, s′i ) + λl̄(s′i ) (2.29)

It can be proven [262] that minimizing d(s, s′i ) + λl̄(s′i ) for each source symbol s also

minimizes J in Equation 2.28. The minimization problems to find {bi} and {s′i } can be solved

in alternate fashion, until the solutions converge, similarly to how the Lloyd-Max algorithm

works in the case of fixed-length codewords. Compared to Lloyd-Max, here there is an

additional step to update the average codeword length l̄(s′i) = − log2 p(s′i ). Finally, to

obtain a solution to the original constrained minimization problem, we perform a search

for a λ for which D ≈ Dmax. Compared to optimal fixed-length quantizers, which put the

decision boundaries in the exact middle of the reconstruction values, optimal variable-length

quantizers position the decision boundaries so that low-probability reconstruction values

are allocated smaller quantization cells.
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2.1.2.4 Asymptotic distortion rate performance of quantizers

In general, for an arbitrary source distribution, it is impossible to obtain analytic

rate-distortion functions for optimal quantizers. However, when the rate R is high enough

(or, equivalently, the distortion D is low enough), we can obtain closed-form solutions for

the distortion-rate function asymptotically (as R tends to infinity). The assumption is that

when R is large, the quantization cells are small enough that we can assume the pdf of

the source is uniform within each cell, making Equation 2.24 tractable. Below I list several

results for different kinds of quantizer:

Dpcm(R) =
1

12
A22−2R

D f ixed(R) = σ2ϵ22−2R where ϵ =
1
σ2

∫
∞

−∞

3
√

p(s)ds

Dvariable(R) = σ2ϵ22−2R with ϵ2 =
22H(S)

12σ2 (H(S) is the differential entropy of S)

(2.30)

D f ixed and Dvariable are the optimal quantizers using fixed-length [218] and variable-length [90]

codewords, respectively. All of the formulas, as well as the Shannon lower bound

(Equation 2.19, here denoted as DS(R) or RS(D)), can be written as D(R) = ϵ2σ22−2R,

with different values for ϵ, which depends on the pdf of the source. In terms of SNR,

SNR(R) = 10 log10
σ2

D(R)
= −10 log10 ϵ

2 + R 20 log10 2 (2.31)

So, for all high-rate approximations, including the Shannon lower bound, the SNR increases

by 20 log10 2 ≈ 6 dB per additional bit stored. It is remarkable that the ratio DV(R)/DS(R)

is constant and is equal to πe/6 ≈ 1.53dB. Correspondingly, the difference in rate is also

constant: RV(D) − RL(D) = 1
2 log2(

πe
6 ) ≈ 0.25 (bits per sample). In other words, at high

rates, the performance of an optimal scalar quantizer is fairly close to the Shannon lower

bound, for a difference of 0.25 bits per sample at the same distortions, or an SNR difference

of 1.53dB at the same rates.

2.1.2.5 Vector quantization

To close the gap between optimal scalar quantizers and the Shannon lower bound,

multiple samples must be quantized together. In vector quantization (VQ) [99], we consider

quantizing blocks of N consecutive samples generated by a stationary random process S.

Most concepts carry over from scalar quantization. For optimal vector quantization with
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fixed-length codes, we simultaneously solve two minimization problems which state the

necessary conditions for the reconstruction vectors and quantization cell boundaries.

generalized centroid condition: sss′i = arg min
sss′

E[dN(SSS, sss′)|SSS ∈ Ci]

nearest neighbor condition: Q(sss) = arg min
sss′i

dN(sss, sss′i )
(2.32)

The extension of the Lloyd-Max algorithm to vector quantization is called the Linde-Buzo-Gray

(LBG) algorithm [166].

For optimal vector quantization with variable-length codes, we again leverage Lagrange

multiplier to turn a constrained to an unconstrained optimization problem. The two

minimization problems to solve for are:

sss′i = arg min
sss′

E[dN(SSS, sss′)|SSS ∈ Ci]

Q(sss) = arg min
sss′i

dN(sss, sss′i ) + λl̄(sss′i )
(2.33)

As before, in each iteration, the average codeword length l̄(sss′i ) is updated to − log2 p(sss′i ).

This algorithm is known as the Chou-Lookabaugh-Gray (CLG) algorithm [38].

Vector quantization (VQ) typically achieves better performances than scalar quantization

(SQ) due to three main reasons: space-filling advantage, shape advantage, memory

advantage [179]. The space-filling advantage refers to the fact that N-dimensional Cartesian

products of intervals (obtained with SQ) are not the best way to partition N-dimensional

space into non-overlapping regions so that quantization error is minimized. For example,

in 2D, the best shape for “tiling” space is not a rectangle but a hexagon, which can only

be obtained with VQ but not SQ. The shape advantage is that VQ can adapt to the pdf of

the source by allocating smaller quantization cells to less probable reconstruction values

without the need to use variable-length codes. Finally, the memory advantage – perhaps the

most important advantage of VQ – is that VQ can exploit correlation among neighboring

samples, which is ample in signals such as images and videos.

One major disadvantage of VQ in practice is that the encoder tends to be slow (while

the decoder is much faster). This is because to find the correct cell for an input sample,

in principle all cells must be examined, and for each cell, a distance involving N pairs of

samples must be computed. The total number of operations then is on the order of N2NR

with N being the block size of the quantizer. This is also the space complexity required to

store the codebook. To reduce this complexity, VQ techniques in practice often impose some
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structure on the quantization cells, such as requiring them to form a tree or a grid (lattice).

The book by Gersho and Gray [89] discusses many such designs.

Taken from [88], the uniform quantizer can achieve an SNR within 7 dB of the best

theoretically attainable quantizer. If uniform quantization is followed by entropy coding (of

the ouput values), this gap decreases to only 1.5 dB. Without entropy coding, an optimum

nonuniform quantizer can be used for an additional 3 dB penalty in SNR. However, these

results all assume that the input samples are statistically independent, which is often not

true for a wide range of data (e.g., images or simulation volumes). For such data, much

better (lossy) compression can be achieved with VQ. In vector quantization, groups of input

samples are quantized together to better exploit their correlations. In fact, the Lloyd-Max or

k-means algorithm previously mentioned is a form of vector quantization when applied to

higher-dimesional data. Although vector quantization often compresses better than scalar

quantization, the issue of generating an optimum codebook is non trivial. Algorithms such

as k-means can be used, but in general this codebook generation process is slow, so vector

quantization is only good for offline compression of data not too large. If scalar quantization

is used for correlated input samples, for better compression ratios, the samples should be

decorrelated with a linear transform or prediction before quantization.

2.2 Data compression practice
The most common type of scientific data is a d-dimensional scalar field f : Rd

→ R,

sampled on a finite regular grid of sample points. The sample points together form a

sequence of real numbers (or more generally, symbols) sss = {si}. The discrete set of all possible

values that each symbol si can take on is called an alphabet A. Data compression is the

process of mapping sss to a sequence of bits bbb such that the length of bbb (in bits) is less than the

length of sss in its more “natural” encoding (e.g., storing each sample value in the IEEE754

floating-point format).

It is useful to think of data compression in practice as a two-step process. In the first

step, often called modeling, sss is mapped to an “intermediate” sequence of symbols βββ = {β j}

(the mapping is not necessarily one-to-one, and can in fact also be the identity map). Each

possible value for β j is called a codeword and the set of all possible codewords is called a

codebook. In the second step, βββ is mapped to the output bit sequence bbb, by assigning a code
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γk (a sequence of bits) to each symbol (or a group of symbols) in βββ. From this perspective,

compression can happen in two ways. First, we can reduce the number of elements in the

codebook so that fewer bits are needed to represent each β j. Such an approach is often called

quantization.Alternatively, or in addition, we can carefully assigning binary codes {γk} to the

codewords {β j} so that the output bbb is shorter on average (over all possible input sequences).

This approach is often called entropy coding. Modeling, quantization, and entropy coding

are the main building blocks of most practical compression algorithms.

2.2.1 Modeling

2.2.1.1 Linear prediction

Linear prediction assumes an order that the data samples are visited, and predicts

the value of the current sample fi using a linear combination that of k previous samples

fi ≈ f̂i =
∑k

j=1 d j fi− j. The resulting residual ri = fi − f̂i typically follows a distribution

with lower entropy than the original sample distribution (e.g., a Laplace distribution), and

therefore can be more effectively encoded with entropy coding. Since the residuals are

also small (in magnitude), they can also be effectively quantized without introducing large

errors. For efficient prediction, the k weights d1, . . . , dk are typically precomputed. This

can be done by assuming that locally f is well approximated by a function g that can be

determined using k known values, e.g., a polynomial of degree k − 1. For example, the

original version of SZ [58] predicts f using degree 0, 1, and 2 polynomials, while Fout and

Ma [83] uses cubic polynomials for their lossless compressor.

If the source data f is multidimensional, so can be the polynomial g. One example is the

Lorenzo predictor introduced by Ibarria et al. [124] and used in FPZIP [171], which estimates

the value of a scalar field at one corner of a (d-dimensional) hypercube from the values at

the other corners. The Lorenzo predictor is exact for fields that satisfy ∂d f /∂x1 . . . ∂xd = 0.

It can also be generalized to higher orders (which use more points for prediction), as done

in recent versions of SZ [280] and lossless ZFP [167].

To make data more coherent for better prediction, some techniques employ a sorting step

prior to prediction. SQ [128] sorts samples based on their coordinates (in either “original

order”, breadth-first, or priority-first order), before decomposing the samples into subsets

and produce one prediction for each subset using the mean value of the subset. On the
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other hand, ISABELA [150] sorts the samples using their values and then fit a cubic B-spline

through a local window of samples. However, this approach necessitates encoding the

sorted order, which can often negate most of the compression gain.

2.2.1.2 Linear transformations using a fixed basis

Linear transformation decorrelates a discrete signal f by expressing f as a linear

combination of simpler basis functions f =
∑

ciui. The idea is that if the basis functions ui

are chosen well, the coefficients ci will be sparse, i.e., most of them are zero or near zero.

Oftentimes, to compress image data, the basis functions ui are chosen so that they capture

varying degrees of details, from high frequencies to low frequencies (e.g., for Fourier-based

transforms), or from coarse scales to fine scales (e.g., for wavelets). Then, compression

can happen by thresholding or heavily quantizing the coefficients associated with the

fine-scale/high-frequency details. Such coefficients are often small in magnitude, thus they

can be heavily quantized or discarded while preserving most of the function’s energy. If

the basis functions are also orthogonal or near orthogonal, these coefficients will also be

less correlated compared to the original data samples, and thus they can be quantized with

cheap scalar quantization to achieve compression ratios otherwise only possible with the

more expensive vector quantization on original data samples.

Perhaps the most well-known orthogonal transform is the Discrete Fourier Transform

(DFT), whose basis functions are complex exponentials at increasing frequencies (CITE).

For scientific data, the DFT has been used for a limited form of direct rendering from

the grid of transform coefficients (the frequency domain) [68, 184, 286, 294], leveraging the

Fourier projection-slice theorem [161], which equates projection (taking integrals) in the

sample domain to the less expensive process of taking slices in the frequency domain. For

compression purposes, the closely related Discrete Cosine Transform (DCT) is more popular.

The DCT is the DFT applied to the periodic version of the input signal using symmetric

extension at the boundary, so that the transform coefficients are real (instead of complex)

numbers [271]. Since its introduction, the DCT has been the cornerstone in most image

and video compression standards, such as the classic JPEG [298], as well as the more recent

AV1 [35], JPEG-XL [8], and HEVC [272].

There are two common criteria to evaluate the efficacy of a linear transform: that of
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decorrelation efficiency (how well the transform decorrelates the input signal) and coding gain

(how much the transform reduces quantization distortion compared to the input signal) [43].

The maximum decorrelation efficiency and coding gain are obtained through the Karhunen

Loève Transform (KLT) transform, whose basis vectors diagonalize the covariance matrix of

the input signal. Notable uses of the DCT for scientific data include the work by Fout et

al. [82], Yeo et al. [318], and Laurance et al. [154]. While there are other well-known orthogonal

transforms beside the DCT in the literature, such as Haar [107], Walsh-Hadamard [7], or

Slant [237], the DCT is shown to achieve better decorrelation efficiency and coding gain than

the other transforms, and is in fact very close to the optimal KLT for common images [43].

The DCT has also found use in scientific data compression [181]. However, for scientific data

(and not everyday images), the ZFP transform [169] which is based on the Gram orthogonal

polynomial, has been shown to achieve even better decorrelation efficiency and coding gain

compared to the DCT and other transforms.

2.2.1.3 Linear transformations using a learned basis

The transform basis can also be data-dependent. There exist two prominent approaches:

sparse coding and tensor decomposition. While both approaches aim to express input

data vectors as linear combinations of basis vectors, they do so in different ways. In

contrast to data-independent transforms, the data-dependent approaches require storing

and transmitting these basis vectors, an overhead that is hopefully compensated for by

making the coordinate vectors more sparse.

Sparse coding (or dictionary learning) is a generalization of vector quantization, in

which each reconstructed vector is now a linear combinations of basis vectors that form

an optimal dictionary D (a matrix where each basis vector is a column). Let {yi} denote

the set of training vectors and {γi} be their projections onto the column space of D. The

goal is to find a D such that the {γi} are sparse (i.e., most entries are 0; such a dictionary

is called over-complete). D and {γi} can be jointly computed by solving the minimization

problem: minD,γi

∑
i wi||yi −Dγi||

2
2 subject to ||γi||0 ≤ K , where ||γi||0 is the number of zero

entries in γi and wi is a weight associated with each sample. If D is fixed, the {γi} can be

found by various pursuit algorithms This optimization problem can be solved using the

K-SVD algorithm [6], which computes the columns of D one at a time. Notable works that
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follow this approach include COVRA [91] and its successors [59, 188].

The other prominent data-dependent approach is based on tensor decomposition. In

2D, the singular value decomposition (SVD) produces the sparsest projection of the input

function into an orthonormal basis. It is not used for compression, however, because the

basis vectors outweigh the transform coefficients; such a decomposition is only attractive in

higher dimensions. In 3D, a volume A is treated as a third-order tensor (a 3D array), with

elements ai, j,k. The Tucker model [138] decomposes A into a product of a core tensor B with

factor matrices Ui, with one factor matrix for each dimension: A = B×1 U1 ×2 U2 ×3 U3. The

factor matrices are nonsingular, and the core tensor is of the same size as A (it is possible to

force the core tensor B to be smaller than A in which case it is the projection of A into the

basis of its factor matrices). This decomposition can be computed using the higher-order

singular value decomposition (HOSVD) [55]. For real-world data, the core tensor B tends

to be quasi-sparse, and the HOSVD produces core slices that are non-increasing in norm.

As a result, lossy compression can be achieved by either truncating core slices with small

norms [14, 275, 316], non-uniform quantization of coefficients [13, 274], or bit plane coding

with significance map [12].

2.2.2 Quantization

I discussed the theory of quantization in Subsection 2.1.2. Here I review coders that

employ quantization in practice.

2.2.2.1 Scalar quantization

Lum et al. [181] use the Lloyd-Max algorithm [177, 190] to quantize DCT-transformed

coefficients. Other examples of adaptive quantization in the literature are the well known

floating-point compressors ZFP [169] and FPZIP [171], as well as the universal lossy

image compressor JPEG [298]. Both ZFP and (lossy) FPZIP employ a form of logarithmic

quantization by dropping least significant bits from the mantissa of floating-point values

(ZFP quantizes transform coefficients while FPZIP quantizes original values). Because

quantization happens for the mantissa, the absolute errors are not uniform but instead are

relative to the magnitude of the input values. This is the quantization preferred by scientists,

since they often describe the precision of their data as the number of decimal digits in

scientific notation. JPEG, on the other hand, deals with integer image data, but also quantizes
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transform coefficients nonuniformly using a quantization matrix. The matrix is designed

so that high-frequency coefficients (which are typically smaller and less important) are

quantized more. Popular lossy compressors for scientific data that use uniform quantization

are SQ [128] and SZ [58, 280]. SQ quantizes groups of data samples, while SZ quantizes

prediction residuals, both to a prescribed input accuracy. In a recent study [132], it has

been found that compression ratios can be improved with SZ by adaptively setting the

quantization error at user level in the analysis of cosmology simulation data. The features of

interest in this type of data (halos, galaxies etc) are separated from the background “noise”,

so a uniform quantization is not optimal as it introduces similar distortion to both the

“signal” and the noise.

2.2.2.2 Vector quantization

Vector quantization was first used for scientific data by Ning et al. [209]. VQ can also

be used on transform coefficients or prediction residuals instead of original samples. For

example, Lum et al. [181] apply VQ on scalar-quantized DCT transformed coefficients,

while Fout et al. [82] transform each block using the KLT transform to produce several

resolution levels, and compress each level using VQ. [81] Schneider et al. [256] also use

vector quantization but with a simple Haar-like transform that separates each block of 23

voxels into one average and seven difference coefficients. Their VQ scheme (hierarchical

VQ, or HVQ) is also the first GPU implementation of VQ for scientific data. VQ can also

be used to quantize residuals in combination with VQ of original samples [220, 221]. An

example of vector quantization for lossy compression of scientific data is HVQ (hierarchical

VQ) [256].

2.2.3 Entropy coding

Entropy coding is often the last step in a compression scheme, after data modeling and

(optionally) quantization. The problem here is to turn a sequence of input symbols into

a binary sequence such that the length of the output in number of bits is less than that

of the input. Many well-known schemes exist for entropy coding, they can roughly be

characterized by whether they operate on individual symbols or groups of symbols and

whether they output fixed-length or variable-length codes. In practice, the random variables

{Si} are rarely independently distributed, and even if they are, it is often not possible to
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achieve an average code length close to the entropy by coding the symbols {si} individually

(since the code length for each symbol has to be a whole number). Therefore, sss is often

treated as a sequence of blocks {sssi}, each of which is mapped to a codeword bbbi. A block sssi has

Li symbols, and is mapped to a codeword bbbi of Ki bits. That is, bbbi = γ(sssi), |bbbi| = Ki, |sssi| = Li,∑
Ki = K and

∑
Li = L. The lengths of the blocks and their corresponding codewords can

either be constant or vary across blocks, leading to four types of mapping: fixed-to-fixed

(e.g., ASCII codes), fixed-to-variable (e.g., Huffman codes [123]), variable-to-fixed (e.g.,

Tunstall codes [252]), and variable-to-variable (e.g., arithmetic codes [312]). Most entropy

coding approaches take advantage of the statistics of the input data (with context/memory or

otherwise) to optimally assign binary codes to symbols. Below I review the most well-known

entropy codes and where they are used in the scientific data compression literature.

2.2.3.1 Huffman coding

Huffman coding [123] is a fixed-to-variable coding scheme that assigns codes of variable

lengths to individual letters {ai} of an alphabetA. It can be constructed from a binary tree,

where each internal node has two children, to which we associate the values of 0 and 1. The

tree itself is built bottom-up by first assigning each letter ai (with probabilities p(ai)) to a

leaf node, then recursively grouping the two least frequent nodes under the same parent,

until there is only one root. The binary code for each letter ai is then obtained by traversing

top-down from the root to the corresponding leaf. Huffman coding achieves compression

by assigning shorter codes to symbols with higher probabilities. It can be shown that the

average Huffman code length is within one bit of entropy: H(S) ≤ Huffman(S) ≤ H(S) + 1.

However, when H(S) is small, this one-bit overhead can be relatively large. JPEG [298]

uses Huffman coding to compress the quantized DCT-transformed coefficients. For

scientific volume compression, Huffman coding has been used to compress prediction

residuals [58, 84, 165, 280] as well as transform coefficients [106, 176, 246, 308, 318]. Komma

et al. [139] compares different entropy coding schemes and general-purpose compressors,

including Huffman coding, for lossless compression of CT and X-Ray scans.

2.2.3.2 Arithmetic coding

To achieve bit rates closer to the entropy, even when the symbols are independent, it

is necessary to “amortize” the coding cost over multiple symbols, for which one common
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technique is arithmetic coding. To see how arithmetic coding works, let us rename the

input sequence sss = {s0, s1, . . . , sN−1} as sssN to indicate that it has N symbols, and define a

relation < (less than) between two sequences sssN and sss′N to mean that there exists n < N such

that sssn−1 = sss′n−1 and sn < s′n. Arithmetic coding associates a sequence sssn with a half-open

range In = [c(sssn), c(sssn) + p(sssn)) ⊂ [0, 1], with p(sssn) = P(SSSn = sssn) and c(sssn) = P(SSSn < sssn)

being the probability and cumulative probability mass functions, respectively, for the

sequence SSSn of random variables {S0, S1, . . . , Sn−1}. We can relate c(sssn) with c(sssn−1) by

noting that c(sssn) = P(SSSn < sssn) = P(SSSn−1 < sssn−1) + P(Sn < sn | P(SSSn−1) = P(sssn−1)) =

c(sssn−1) + p(sssn)c(sn | s0, s1, . . . , sn−1). Similarly, p(sssn) = P(SSSn = sssn) = P(SSSn−1 = sssn−1)P(Sn =

sn | SSSn−1 = sssn−1) = p(sssn−1)p(sn | s0, s1, . . . , sn−1). These formulas give a recipe for iteratively

updating the range In associated with sssn as n increases (these ranges are in fact nested i.e.,

In ⊂ In−1 ⊂ . . . ). Each range In can be encoded by the binary code of any number within that

range. This (theoretical) procedure is known as Elias coding, while arithmetic coding (or range

coding) refers to a family of practical approaches [186, 222, 244, 312] that implements Elias

coding using finite precision arithmetic. Compared to Huffman coding, arithmetic coding

is often slower but achieves bit rates closer to entropy, while also not requiring the source

statistics to be known prior to coding (it can be computed on the fly). Arithmetic coders can

also more easily exploit correlation among symbols to reduce code size, a technique known

as context coding. CABAC of H.264 [185] and EBCOT of JPEG2000 [281] are two well-known

binary context coders. FPZIP [171] uses range coding to compress prediction residuals for

floating-point scientific data.

2.2.3.3 Universal codes

In many cases, scanning the source sss to obtain the needed statistics for Huffman or

arithmetic coding is impractical, since sss may be too large or compression has to be done

on-the-fly. In such cases, universal codes that do not depend of source statistics such as

unary, Elias γ and δ [70], Golomb [95], Rice [243], or Exponential-Golomb [283] codes can

be faster and more convenient. These codes are designed to compress positive integers by

allocating, to different extents, fewer bits to smaller numbers. The unary code α(n) of a

positive integer n comprises of n − 1 zero bits followed by a one bit. The natural binary

expansion β(n) of n > 0 is the L-bit sequence {b0, b1, . . . , bL−1} such that
∑

2(L−1−i)bi = n.
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Unlike α, the binary code β is not uniquely decodeable. The Elias γ code fixes this issue

by using α(L) to specify the length L of β(n), i.e., γ(n) = α(L)β′(n) (β′ is β without the first

bit, which is always one and thus is redundant when prefixed with α). This technique

of combining β with either α or γ is quite common. For example, the Elias δ code uses

γ(L) in place of α(L), i.e., δ(n) = γ(L)β′(n). Golomb codes (used in JPEG-LS [304]) are

parameterized on a number b and has two parts: n div b in unary, then n mod b in binary, i.e.,

Golombb(n) = α(n div b)β′(n mod b). Exponential-Golomb codes (used in H.264/AVC [133])

replace the first part with γ(n div b). Rice codes are a special case of Golomb codes where b

is a power of two, and thus admits very fast encoding/decoding by simple bit shifts. The

different codes are optimal for different probability distributions of input symbols. The

unary code α is optimal for integers that occur with probability P(n) = 2−n. For γ and δ

codes, the optimal probabilities are P(n) = 1/(2n2) and 1/(2n log2
2 n), respectively. Golomb

codes are optimal for coding geometric distributions produced by a Bernoulli process, i.e.,

P(n) = (1− p)n−1p (this is the probability of n−symbol runs of a binary symbol occuring

with probability p).

2.2.3.4 Lempel-Ziv coding

The above universal codes are good options when the source sequence sss can be well

modeled by a single global probability distribution. However, many sources in practice are

better modeled by a combination of local distributions instead (i.e., neighboring symbols

exhibit higher correlation compared to distant symbols). In such cases, local methods such

as Lempel-Ziv coding [306, 324, 325], interpolative coding [201], or group testing [116] often

perform better. Lempel-Ziv (LZ) coding, or dictionary coding, builds a local codebook from

previously seen symbols, and replaces a subsequence of symbols with a codeword that is a

pointer to where it has occured. Previous symbols tend to make a very good codebook (or

dictionary), especially for text-bases sources, since prior text tends to be in the same language

and style as current text. The different variants of LZ-based methods mostly differ in how the

input is parsed, how the dictionary is stored, and how the pointers are represented. While

LZ77 [324] uses pointers of type (offset, length, next symbol) to refer to any phrase in

a sliding window of some length, LZ78 [324] uses only (code, next symbol) to refer to a

previously seen phrase in a codebook represented as search tree (or trie) that is built gradually
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by adding new phrases as the coder encounters them. LZW [306] removes the need to

include the (next symbol) by including all symbols of the alphabet into the codebook in

the beginning. The pointers in LZ-based methods can be encoded using entropy coding

methods such as Huffman coding, as done in DEFLATE [56]. LZ-based methods work well

on text-based sources, but their use in image and scientific data compression is limited,

mainly because repeating patterns are rarer for data in the latter category. Nevertheless,

DEFLATE is used in the lossless image format PNG [28] and is supported by both HDF5 [79]

and ADIOS [174, 178], two well-known file formats for scientific data.

2.2.3.5 Interpolative coding

Like universal codes, interpolative coding [201, 202] is a nonstatistical method designed

to encode a list of nonnegative integers. It constructs a binary tree where each leaf is

assigned one integer in the list, and a parent node is assigned the sum of its children. It then

encodes the root as well as all left-child nodes of the tree in a top-down manner, achieving

compression due to the fact that if n is the value at a parent node, then at most ⌈log n⌉ bits

are needed to encode a child value. Intuitively, the higher-order bits of the leaf values

are stored once in their common ancestor nodes, resulting in compression. Interpolative

coding is especially effective when the input integers form clusters since more bits can be

shared, and can often achieve better compression ratios than universal codes [311]. It does

so while retaining the main benefit of universal codes in that it avoids the need to gather

source statistics required by statistical codes such as Huffman. A related idea is tournament

coding [284], where a parent node is assigned the maximum value of its two children instead

of the sum. Interpolative coding has been used successfully for compressing the position of

mesh vertices [57] and of particles [113] in 3D.

2.2.3.6 Group testing

Given a binary string, run-length coding encodes runs of the same bit (either zero or

one) using a single number. Group testing is a generalization of this idea, where same-value

bits can be grouped together and replaced by a single bit even if they do not form a run.

Given a nonempty set K of bits, of which some bits are one (significant) and the rest are zero

(insignificant), a group test can output either 0 (to indicate that all bits of K are insignificant)

or 1 (to indicate that at least one bit of K is significant). If the output is 0, we know that all
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bits of K are 0 and K needs not be tested further. If the output is 1 and |K| > 1, K is split

into two roughly equal size parts K1 and K2 and the same group test can recurse on each

of these parts until all bits of K are coded. This procedure results in a code equivalent to

the Golomb code [116]. Group testing originates from the problem of identifying soldiers

infected with syphilis using the least amount of tests. The idea is to pool together blood

samples of several men, and if syphilis is rare among the population, then one test that

returns negative for the combined blood sample is enough to exempt the whole group. This

problem was first studied formally by Dorfman [63].

In designing a group testing algorithm, the optimal choice of |K| depends on p, the

probability of a bit being significant. Intuitively, we prefer each outcome of a group test

(either 0 or 1) to have a probability of approximately 0.5. Thus, |K| should be chosen so

that the probability of |K| zero bits occuring is 0.5, or p|K| = 0.5. Also important are the

way groups are form and how a group is split. An algorithm can be adaptive if the number

of significant bits is unknown in the beginning. Algorithms to solve the group testing

problem are presented in the book by Du and Hwang [65]. In the context of compression,

group testing is often used for compressing transform coefficients in images. Since these

coefficients usually exhibit spatial coherence, often also across levels of a hierarchy, they can

be grouped and tested for significance together. Group testing is common in wavelet-based

coders, where a group is often defined as a subtree of wavelet coefficients and testing is

done one bit plane at a time.

Examples of embedded bit plane coders include EZW [261], SPIHT [249], SPECK [227],

SBHP [39], ECECOW [317], and GTW [116]. Some wavelet coders use Golomb codes [183,213]

to encode wavelet coefficients. Although not a wavelet coder, ZFP [169] also uses group

testing to encode bit planes of transform coefficients. Finally, group testing can also be used

on quadtrees to code binary images, or on octrees to code 3D positions of particles, as done

by MPEG [257].

Although most resolution-based techniques stress progressivity, here the majority of

techniques adopt a single-error, write-once-read-once approach, where compression and

decompression happen only at a predetermined quality. This approach requires the user to

choose between reducing too much at write time or decoding too much at read time.
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2.3 Discrete wavelet transforms
The discrete wavelet transform is a linear transform that decomposes an input signal x of

length N into two parts: the trend s signal and the detail signal d, each of length N/2. The

idea is that s captures the essence of x but at half the resolution, while d captures the local

variance in x, which, when added to s, recovers the original signal x. In the context of data

compression, d can then be either discarded or otherwise heavily quantized while most of

the energy of x is preserved by s. In the literature, wavelets can be presented from the filter

bank or lifting viewpoints. Here, I present wavelets from the lifting viewpoint.

2.3.1 The lifting scheme

Consider a real-valued signal x = [x0, x1, . . . , xN−1]. To obtain the detail signal d,

assuming that x is reasonably smooth, we can predict each odd sample x2k+1 to be the same

as the previous even sample x2k, and record the difference in d. To do so, we first split x into

an odd and an even part:

[split] x =

[
xeven
xodd

]
(2.34)

where xeven = x{2k} and xodd = x{2k+1}. Then, the detail signal d is the difference between xodd

and xeven: d = xodd − xeven. The trend signal can then be xeven itself: s = xeven.

Another reasonable set of rules is for s to be half the sum of the odd and even subsignals:

s = 1
2 (xeven + xodd), and d = xeven − s, or, equivalently, d = 1

2 (xeven − xodd) and s = xeven − d.

In lifting terminology, the step that computes d is called the predict step, while the step that

computes s is called the update step. In matrix form, we have

d =
1
2

[
I −I

] [xeven
xodd

]
(predict)

s =
[
I −I

] [xeven
d

]
(update)

(2.35)

Putting both transformations in a single matrix Ta (the subscript a is for analysis), we have

[
s
d

]
=

[
I −I
0 I

]
︸ψψ︷︷ψψ︸

U

[
xeven

d

]
=

[
I −I
0 I

]
︸ψψ︷︷ψψ︸

U

[
I 0

I/2 −I/2

]
︸ψψψψψψψψψ︷︷ψψψψψψψψψ︸

P

[
xeven
xodd

]
=

[
I/2 I/2
I/2 −I/2

] [
xeven
xodd

]
=

[
I/2 I/2
I/2 −I/2

]
[split]︸ψψψψψψψψψψψψψψψψψψ︷︷ψψψψψψψψψψψψψψψψψψ︸

Ta

x
(2.36)
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The matrices P and U are for the predict and update steps, respectively. In general, lifting

involves chaining together potentially several predict and update steps. In this simple case,

Ta = UP. The lifting steps can also be easily inverted to form the inverse wavelet transform,

captured by the synthesis matrix Ts = T−1
a = [merge] U−1P−1. The columns of Ts are called

the wavelet basis functions.

2.3.2 Biorthogonal wavelets

The above transformation is called the Haar wavelets (CITE), a member of the Daubechies

dbN wavelet family [52]. Daubechies wavelets are orthogonal and have compact support,

making them useful in practice. A variety of wavelets exist, each with different sets of

properties that make them suitable for different uses. Such properties include: orthogonality,

length of the support, symmetry, number of vanishing moments, and regularity of the

wavelet. Unfortunately, some of these properties are mutually exclusive. For example, Haar

is the only orthogonal wavelet with compact support and is symmetric; other wavelets

in the DbN family are smoother (have more vanishing moments) but are not symmetric.

To obtain symmetric wavelets with compact support, we must forgo the orthogonality

requirement. The results are biorthogonal wavelets [47].

An example of biorthogonal wavelets is the CDF(2, 2) wavelets, with 2 and 2 referring

to the number of vanishing moments for the low-pass and high-pass filters. For CDF(2,

2), instead of predicting an odd sample to be the same as the preceding even sample, we

predict it to be the average of two neighboring even samples. In other words, we have

d = xodd −
1
2
(xeven + S−1xeven) (predict)

s = xeven +
1
4
(d + Sd) (update)

(2.37)

with S being the shift operator i.e., xn+1 = (S−1x)n The 1
4 factor is o that s and x have the

same average value. The corresponding predict and update matrices are

P =

[
I 0

−
1
2 (I + S−1) I

]
, U =

[
I 1

4 (I + S)
0 I

]
(2.38)

2.3.3 Multiresolution transforms

The above matrices are for one-scale wavelet transforms. To perform multiscale

decomposition of the input signal x, we recursively apply the same analysis transformation,
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but only on the trend signal. If we consider the input signal x as the trend signal on some

resolution level, say, 3 (i.e., x = s3), then:[
s2
d2

]
= W(3)

a s3
s1
d1
d2

 =
[
T(2)

a 0
0 I(2)

] [
s2
d2

]

s0
d0
d1
d2

 =

T(1)

a 0 0
0 I(1) 0
0 0 I(2)



s1
d1
d2


(2.39)

Assuming k levels of transform are performed, we can concatenate the transformations at

all levels into a single analysis matrix W(k)
a , namely

s0
d0
. . .
dk

 = W(k)
a sk (2.40)

To reconstruct x = sk from the trend and detail signals at level k, we transform with the

synthesis matrix W(k)
s which is the inverse of W(k)

a .

sk = W(k)
s


s0
d0
. . .
dk

 (2.41)

The columns hi of Ws are the wavelet basis functions at scales 0, 1, . . . , k. The input signal

sk is effectively decomposed into a linear combination of the wavelet basis functions (the

components of the trend and detail vectors are called the wavelet coefficients). For example,

s3 = s0[0]h0 + d0[0]h1 + d1[0]h2 + d1[1]h3 + d2[0]h4 + d2[1]h5 + d2[2]h6 + d2[3]h7 (2.42)

Such a decomposition is called the multiresolution representation of the input signal x = sss3.

Regardless of the number of resolution levels, the number of wavelet coefficients is always

the same as the number of original data samples. The 1D wavelet basis functions on the

same resolution level are simply translated versions of a single basis function. For example,

in Equation 2.42, h2 and h3 are both associated with d1, meaning they are translated versions

of some basis function h1. Similarly, h4, h5, h6, h7 are all translated versions of the basis

function h2.
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2.3.4 Multidimensional transforms

When the input signal x is defined in higher dimensions, we can take the tensor product

(Kronecker product) of the 1D basis functions to form multidimensional basis functions.

For example, in 3D, ignoring translations, each basis function will have the form

hi jk = hi ⊗ h j ⊗ hk (2.43)

where 0 ≤ i, j, k ≤ L with L being the number of transform passes in each dimension. The

Kronecker product ⊗ just means hi jk(x, y, z) = hi(x)h j(y)hk(z).

The set of wavelet coefficients whose corresponding basis functions are translated

versions of the same function hi jk is called a subband. Effectively, the multidimensional

wavelet transform partition the original set of samples into a set of subbands. The subbands

capture different combinations of average-detail across the dimensions. For example, one

subband may contain fine details along x, but average information along y and z, while

another subband contains fine details along y and average information along x and z.

There is always one subband that captures average information along all dimensions – this

subband represents the original input signal. A nice property of defining multidimensional

basis functions as Kronecker products of 1D basis functions is that the transform can be

done along one axis at a time.

However, it is not always the case that all combinations of {i, j, k} exist. Which

combinations of {i, j, k} exists depend on how the multiresolution transform is done in higher

dimensions. For example, if L transform passes are performed in x, followed by L passes in

y and L passes in z, each time done on the whole domain, then indeed every combination

of {i, j, k} exists. However, if the transform passes in x, y and z are done in an interleaved

manner, and next-level transforms are performed only on the coarsest-resolution subband,

then the only combinations of {i, j, k} that exist are ones in which max (i, j, k)−min (i, j, k) ≤ 1.

These two ways of transform are the most common in practice, the former is called the

standard decomposition, while the latter is called the nonstandard decomposition [23]. The

nonstandard decomposition is slightly more efficient to compute. Additionally, all basis

functions in the nonstandard decomposition has “square” supports (same lengths in all

dimension), while some basis functions in the standard decomposition have nonsquare

support. The choice of subband decomposition depends on the application, although in the

data compression literature, the nonstandard decomposition is more popular.



CHAPTER 3

PREVIOUS WORK

This chapter reviews previous work in the literature on lossy encodings of image and

particle data.

3.1 Encodings for image data
Lossy compression approaches approximate an input sequence (of, say, image pixels)

with another sequence sss′, before encoding sss′ using entropy coding. The size of sss′ can either

be the same or smaller than the size of sss. In the former case, compression can still happen

if the values in sss′ are expressed using a smaller alphabet. Examples of this case include

the scalar quantization methods discussed in Subsection 2.2.2. In practice, methods that

reduce the alphabet, but not the length of sss′, are said to be reducing the data’s numerical

precision (i.e., reducing the number of bits required to specify each data sample). In contrast,

methods that reduce the length of sss′ but not necessarily its alphabet, are said to be reducing

the data’s spatial resolution. In this case, each data sample in sss′ is often an average value that

serves as a surrogate for a block of samples in sss. From this point of view, precision-reduction

corresponds to scalar quantization, while resolution-reduction corresponds to vector

quantization. In either case, the quantization can either be uniform (data-indepdendent) or

adaptive (data-dependent), with the common trade-off that data-dependent methods tend to

compress better at the expense of computational complexity.

For reasons that are perhaps historical, in the literature, precision-reduction methods and

resolution-reduction methods are treated as disctint paradigms, often studied by different

communities: the former by data compression researchers and the latter by computer

graphics researchers. These communities work with different assumptions and priorities:

data compression deals with relatively smaller datasets and prioritizes data quality, wheares

computer graphics deals with larger datasets and prioritizes speed through smaller data
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sizes. However, we will see that combining both paradigms allows us to find better

quality-size/speed tradeoffs, which is crucial for handling today’s terabyte-scale scientific

datasets. After all, (vector) quantization is about reducing both the alphabet (precision) and

the sequence length (resolution). Intuitively, when either is reduced to a certain degree, it is

wasteful not to reduce also the other.

If the difference d between sss and sss′ is kept, sss can be recovered from sss′ and d. Furthermore,

sss′ itself can be recursively quantized, effectively decomposing the original sss into a sequence

of signals

3.1.1 Precision-based encodings

Other approaches [169, 227, 249] provide an additional degree of flexibility: the ability to

specify a desired precision during decompression. Many of these approaches are used in

combination with wavelets or other transforms, encoding the coefficients one bit plane at a

time. Progression in precision is achieved by sorting the bit planes in decreasing order of

significance, thus decoding the bit stream gives a progressive best effort approximation.

For effective compression, however, a bit plane will often span multiple resolution levels,

which complicates decoding when only a subset of the levels are desired. Most embedded

coders encode the transform coefficients one bit plane at a time, using some form of

group testing [116]. The zfp compression scheme [167] encodes transform coefficients by

bit plane, in order of decreasing significance. By partitioning the domain into 4 × 4 × 4

independent blocks, zfp supports fixed-rate compression, random access to the data,

localized decompression, and fast inline compression. Extensions of zfp allow it to vary

either the bit rate or precision spatially over the domain, albeit at fixed resolution [170].

Most work that explores the precision axis can be found in wavelet coders. Wavelet

coefficients in corresponding regions across subbands can be thought of as belonging to a

“tree”. The embedded zerotrees (EZW) coder exploits the observation that in such trees,

“parent” coefficients are often larger in magnitude than their “children”. EZW therefore

locates trees of wavelet coefficients that are insignificant with regard to a series of thresholds

and encodes such a tree with one single symbol. The thresholds are typically set at the bit

planes, starting from the most significant one. In this way, the data can be progressively

refined in precision during decompression. The SPIHT coder [249] improves on EZW by
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locating more general types of zero trees [36]. SPECK [227] extends SPIHT to also exploit

spatial correlations among nearby coefficients on the same subband.

3.1.2 Resolution-based encodings

Another common data encoding paradigm is multilevel representations, in which the

data is decomposed into multiple “levels” (most often either resolution levels or precision

levels). Such encodings allow data to be partially decoded to obtain data approximations, by

decoding a subset of the levels. More bits can be decoded on-demand to obtain progressively

better approximations. This approach allows users to work immediately with decoded data,

and having their approximations refined over time, without having to wait for the whole

data to decode, which can take a long time.

Most resolution-based approaches subdivide the space to form a tree, where branches

denote a spatial subdivision in one or more dimensions. How the dimensions are treated

(simultaneously [151,205] or independently [77,314]) defines the shape of the tree. At coarse

levels, data samples are obtained through some form of weighted averaging [29, 151, 238].

These trees often duplicate data for lower resolutions and therefore incur overheads in

progressive data loading. Fine-level nodes can be discarded based on a threshold, thereby

storing only sparse trees [22, 49, 78, 93, 109]. However, such approaches primarily support

visualization and not numerical analyses.

Another group of techniques use data-dependent basis transforms [12–14,82,91,274,275],

expressing the data as a linear combination of multi-dimensional basis functions forming

levels akin to resolution. Common image and video compression methods also take

this approach using variants of the discrete cosine transform [35, 272, 298], but with

data-independent bases, thus trading quality for speed during encoding. These approaches

are often limited in reconstructing coarse approximations, since often their “resolution

levels” and the actual data samples in the original grid have no direct correspondence.

Therefore, the (inverse) transform must be done at full resolution, and only subsequently

can redundant samples be discarded, which is costly. Some approaches circumvent this

limitation by constructing an octree before the transform [59,91,188]. Still, these approaches

provide limited or no progression in precision.

Another notable approach, the IDX file format [146, 149], supports fast decoding by
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rearranging grid samples into a spatially coherent hierarchical space-filling curve [96, 223].

Because the rearrangement is efficient, IDX and techniques derived from it have been

shown to scale to very large data sets [145, 224, 245, 273]. In this work, I show that IDX’s

hierarchy [223] is a specific type of wavelet hierarchy, just without data filtering. Lacking

data filtering means IDX does not have an interpolation basis and the coherency needed for

effective compression.

A very common scheme to generate a tree-like hierarchy is to construct low-resolution

copies of the data from higher resolution ones through downsampling. Examples include

Gaussian and Laplacian pyramids [29] and mipmaps [151, 238]. The data is often stored

in blocks on each resolution level. To save bandwidth, low-resolution versions of distant

blocks can be streamed during rendering. However, these methods increase storage

requirements, making them unsuitable for very large data. Recent multiresolution techniques

save storage by adapting to the data in such a way that different regions are stored

with different resolutions. A very popular approach is sparse voxel octrees [49, 93] and

variations [22, 78, 109]. Smooth-varying regions are stored at coarser octree levels, which

significantly reduces storage. During rendering, blocks of samples are streamed from an

appropriate resolution, determined by how far the queried samples are from the eye/camera.

A sparse, multiresolution hierarchy can also be built using other trees such as B+ tree [205]

and kd-tree [77, 314], or space-filling curves [96, 223], which reorder data samples to form

a hierarchy without any filtering steps or redundant samples. Low-resolution levels are

constructed via subsampling, which, unfortunately, is prone to aliasing problems.

Other multiresolution approaches reduce data by transform-based compression. For

example, COVRA [91] constructs an octree of bricks (consisting of blocks) and learns a sparse

representation for the blocks in terms of basis blocks. Similarly, Fout et al. [82] transform

each block using the KLT transform to produce several resolution levels, and compress each

level using vector quantization [209]. Schneider et al. [256] also use vector quantization but

with a simple Haar-like transform that separates each block of 23 voxels into one average and

seven difference coefficients. Other examples of transform-based hierarchies include works

that use the Tucker decomposition [13,14,274,275], which decomposes the input data (stored

as a tensor) into n matrices of basis vectors and one core tensor. Tensor decomposition

works for higher dimensional data and can achieve high compression ratios, albeit at the
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price of a costly transform step.

The precision-based level of details (PLoD) scheme proposed in MLOC [96] truncates

floats by dividing a double-precision number into several parts. MLOC includes a

multiresolution scheme based on Hillbert curves, but this scheme (based on resolution) and

the PLoD scheme (based on precision) are exclusive.

3.1.3 Adaptive-resolution encodings

Tree-based hierarchies, such as k-d trees [77, 314] and octrees [129], are among the

most popular spatial-subdivision schemes due to their simplicity. Octrees, in particular,

have found widespread adoption across diverse domains. They are especially useful

when the data contains sparse details, so the smooth-varying regions can be stored at

coarser octree levels, thereby reducing storage, e.g., using sparse voxel octrees [22, 49, 93].

Recent approaches have made modifications to traditional octrees to leverage modern

computational architectures. For example, OpenVDB [205] increases the tree branching

factor to ensure that sibling nodes are stored contiguously in a cache-friendly layout;

SPGrid [259] stores octree levels separately as sparse and nonoverlapping grids, taking

advantage of virtual memory handling capacities in modern operating systems. Similar to

SPGrid, I store per-level vertices separately and aggregate them on demand, but use hash

tables instead of the OS’s virtual memory to handle sparsity.

Adaptive mesh refinement (AMR) [19, 67] is another popular class of multiresolution

schemes, especially for simulations. In structured AMR, each resolution level consists of a set

of nonoverlapping uniform grids. As the grids can be placed arbitrarily, fine-resolution grids

can be used to quickly resolve fine details. An AMR mesh can be either vertex-centered or

cell-centered, depending upon where the data points are stored. Although the cell-centered

approach is more common, visualizing the resulting mesh requires preprocessing steps,

such as remeshing and stitching [204, 303] and ad hoc interpolation [175, 299].

Wavelets provide a rigorous framework for multiresolution decomposition that is also

amenable for data reduction and, thus, is commonly used in visualization frameworks for

large data [162,163,287,315]. There also have been works that study data simplification and

approximation using wavelet-based subdivision schemes [20, 100], as well as representing

multilinear functions using a minimal number of mesh elements to reduce memory
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footprints [172, 305].

Linsen et al. [172] subdivide cubes into simplices and use linear interpolation for function

reconstruction. Weiss and Lindstrom [305] later demonstrated that using multilinear

interpolation produces superior quality meshes with respect to approximation error. Bhatia

et al. [25] extends Weiss and Lindstrom’s approach by utilizing rectangular cuboidal cells as

opposed to cube-shaped cells (of a standard octree hierarchy), thereby significantly reducing

memory requirements. Both of these work use linear B-spline wavelets [47], since multilinear

interpolants are at the foundation of many visualization techniques [11, 41, 180, 208]. Sparse

grids [87, 321], a common solution for circumventing the curse of dimensionality when

solving partial differential equations, also form a piecewise multilinear multiresolution basis.

Wavelets [52] are the most common transforms that support fast multiresolution decoding.

Each transform step separates the input samples into equal halves: (1) low-pass coefficients

representing a coarser grid, and (2) high-pass coefficients containing fine details absent in the

first half. This transform can be recursively applied to produce a hierarchy of coefficients

capturing details at multiple scales. Wavelet transforms are local and fast, and the coefficients

are highly compressible [37, 39, 227, 249, 261, 282], and thus they are used in various data

reduction systems [45, 162, 239, 315]. The multiresolution nature of the wavelet transform

also makes it useful for, e.g., level-of-detail visualizations [105,106,125,207,241,256,287,307].

Nevertheless, most of these systems do not take advantage of precision-based reduction, or

do so only as a final lossy compression step with no progression. In contrast, my unified

tree seamlessly consolidates resolution and precision.

Transforms that use fixed bases avoid such high computation cost at the expense of

slightly less effective compression. Perhaps the most popular transform that uses a fixed

basis is the (discrete) wavelet transform (DWT), which constructs a hierarchy of resolution

levels via low and high bandpass filters. The transform is recursively applied to the lower

resolution band, resulting in a hierarchy of “details” at varying resolution. The DWT is

merely a change of basis that does not increase the data size. Furthermore, the wavelet basis

functions are defined everywhere in space, requiring no special interpolation rules when

given some arbitrary subset of wavelet coefficients. One disadvantage of the DWT is the

random access cost, which is not constant time, although there has been work to develop

acceleration structures to speed up local queries [305].
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Besides offering a multiresolution decomposition, enabling data streaming with level-

of-detail support, wavelet coefficients are especially amenable for compression, through

thresholding or entropy compression. In storing and visualizing scientific data, wavelets

(with compression) are used in a wide variety of systems [45,162,315] and applications, such

as volume rendering with level-of-detail [105,106,125,207,307], turbulence visualization [287],

and particle visualization [241].

Most wavelet-based techniques employ tiling of wavelet coefficients in individual

subands to facilitate random access and spatial adaptivity in resolution. For example,

the VAPOR toolkit [162] incorporates a multiresolution file format based on wavelets to

allow data analysis on commodity hardware by storing individual tiles in separate files to

allow loading of the region of interest. However, like most multiresolution work, only the

resolution control is leveraged. The precision axis, which can potentially further reduce

data transfer, is left unexplored.

3.1.4 Quality levels

JPEG2000 [282] allows for the selection of a small set of quality levels (computed at

compression time) that are optimal combinations of resolution and precision in L2 norm.

This approach has disadvantages when applied to scientific data, since the preselected

quality levels are quite limited, with little control over how those are achieved. I instead

explore how the precision-resolution space can be navigated flexibly. JPEG2000 is also

designed for imagery and not scientific data and as such does not support high-precision

data. In addition, it is not concerned with large out-of-core data and therefore does not

optimize for disk I/O. Overall, its optimization is tailored for visually appealing images and

not necessarily the best for achieving scientific tasks, may require using very different kinds

of error metrics.

The most relevant approach to the target of this work is VAPOR [46, 162], a data

visualization toolkit that uses wavelets for compression and multiresolution access. VAPOR

also exposes a set of predetermined quality levels at compression time. At read time,

VAPOR can selectively fetch wavelet coefficients as the user increases the quality level

and/or resolution level, reducing I/O and computation overheads. However, the quality

levels correspond to the number of wavelet coefficients to decode and are not a direct control
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over data precision. This, together with the fact that only a few quality levels are supported

(by default 4), means that the control over data quality is quite limited.

Schemes that allow progressive data access in both resolution and precision include

SBHP [39] and JPEG2000 [264]. Both partition each subband into blocks and code each

block independently, in bit plane order. By interleaving compressed bits across blocks, one

can construct a purely resolution-progressive or a purely precision-progressive stream, or

anything in between. JPEG2000 has found use in the compression of scientific data, e.g., by

Woodring et al. [315]. Since most JPEG2000 implementations are limited to integer data, the

authors apply uniform scalar quantization to convert floating point data to integer form.

Even though JPEG2000 supports varying both resolution and precision, most works do not

explore this capability but focus only on setting bit rate. In general, efficiently leveraging

both axes of data reduction has not been well studied.

3.2 Encodings for particle data
In this section I give an overview of the literature on particle (point cloud) data

management and compression.

3.2.1 Particle hierarchies

One of the most common ways to introduce structure to a particle dataset – to facilitate

compression – is to impose a spatial hierarchy (a tree) on the particles. Many state-of-the-art

compressors follow this approach, where the tree can be one of many types, e.g., binary

trees [92], quadtrees [255], octrees [9, 86, 118, 120, 157, 173, 194, 216, 219, 232, 254, 257], k-d

trees [42, 57], and bounding-volume hierarchies [248]. An octree where each node stores

the occupancy of its children is by far the most common approach. A hierarchy helps

compression in two ways. First, the higher position bits are “distributed” into coarser

tree levels and shared among particles in the form of coarse tree nodes. Thus, in finer

nodes, one needs to store only the lower order bits for the particles within, possibly with

truncation [117, 121]. Second, regions with no particles (empty space) are quickly identified

and carved away, further reducing the number of bits needed to accurately locate particles

— a key property that helps both compression and rendering [253, 296, 297].

Although a tree naturally provides a progressive coarse-to-fine structure, from which

representative particles can be decoded and viewed [85,248], some techniques generate levels
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of detail through subsampling [92,118,245,258,288,313], which requires no data duplication

at coarse levels, and is often faster to compute. Random subsampling [92,258,288] may seem

a reasonable choice, but leads to suboptimal compression because the bounding volumes

for coarse particle subsets are not easily bounded. This is not the case with the lazy wavelet

inspired odd-even subsampling, which exactly halves the bounding volume at each level.

Wavelet-based downsampling is common for compressing mesh vertices [135, 182, 290].

When a mesh is not readily available, connectivity can be introduced by building a graph [34],

local graphs [263,302], or a resampled signed distance field [141] from the particles. Instead,

I use a regular grid, which is simple and fast to compute.

3.2.2 Error-guided tree construction and traversal

Minimizing approximation error can be cast as a (hierarchical) clustering problem,

where, at each level, particles are clustered and represented with points chosen to minimize

some error metric [75, 98, 117, 118, 168, 226, 231]. More data-adaptive hierarchies reorder

child nodes based on their predicted occupancy [120], or make planes of k-d divisions

adaptive to local variations [42]. The trade-off between quantization (imprecise particles)

error and discretization (low particle count) error has been studied both in theory [137]

and practice [158, 291] for triangle meshes, where refinement heuristics are given based on

geometric distortion measures, including a progressive reconstruction that ranks octree

nodes by a priority value [233].

My adaptive traversal instead assumes no connectivity information and works on generic

particle data. For reconstructing point-sampled geometry, DT has been shown to be memory

efficient whereas BT gives better progressive reconstruction [27]. In fact, BT is by far the

more preferred traversal order in the literature. However, I show that the reconstruction

quality of DT can be vastly improved through my odd-even decomposition of space. Finally,

some studies have focused on task-based error metrics for point clouds beyond PSNR [9,64].

My block-adaptive traversal also facilitates a user-specified error heuristic at decoding time

independently of how the data are encoded.

3.2.3 Large-scale and out-of-core techniques

Techniques that handle large data usually organize the data into blocks, so that each

block can be randomly accessed and decoded independently as needed [253,258]. Multilevel
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hierarchies that treat subtrees as blocks are also not uncommon [31,66,85,136], but previous

approaches traverse both the coarse-level tree and the fine-level subtrees (blocks) using BT,

which restricts the traversal to a single progressive order, where blocks are traversed one by

one with potential memory reuse in between. In contrast, by using DT within the blocks,

my block-hybrid trees allow for simultaneous, independent, and progressive decoding of all blocks,

not one at a time. This approach provides excellent computational gains because thanks to

DT’s low memory footprint.

3.2.4 Modeling for compression

For effective compression, techniques often assume some model for the particle data.

The model can be prescribed, using e.g., local planes [94, 210, 219, 226, 254, 267, 302], higher

order surfaces [76, 255], self-similarity of patches [60, 122], grid-based or graph-based

transforms [199,242,285], or learned from training data [64,102,119,206,300]. The model can

also be statistical [86, 153, 194], which often means using a frequency histogram to drive an

arithmetic coder [200]. It is also common to sort particles to introduce coherency, either with

a graph-based traversal [103,197] or by directly using particle coordinates [131,143,212,279].

My odd-even context coding assumes a statistical model but is unique in that it relies on

self-similarity between subsampled versions of the same point set, which is an idea not

previously explored.



CHAPTER 4

HIERARCHICAL MODEL UNIFYING

RESOLUTION AND PRECISION

Consider discrete samples of a scalar field defined on a regular grid. The samples can

be defined in three domains simultaneously: the original image domain, a tree domain,

and a linear storage domain (see Figure 4.1). The image domain is important for spatial

display and computations. For example, data filtering and feature extractions happen

in this domain. The tree domain is important for reasoning about data approximations

and apdative refinements. In this domain, approximations are often formed by pruning

tree nodes toward the leaf level, and adaptive refinements corresponds to selecting which

subtree to include. The storage domain is important for reasoning about reading and

writing data samples from and to computer memory, which, unlike the image domain, is

inherently linear. Here, the ordering of the samples matter, since memory I/O happens not

in individual but rather blocks of samples.

An id function map sample coordinates in the image domain into the linear storage

domain, i.e., id(x, y, z) = i means the sample at coordinates (x, y, z) in 3D is stored at index i

in memory or on disk. The id function is one-to-one, meaning no two samples share the

same index. If we consider the domain of id to be not the entire Rd but only restricted to

where the input field is defined, then this function is not necessarily onto, meaning there

can be slots in the linear storage where no samples Similarly, every sample maps one-to-one

to a node in the tree. To determine which node, a lvl function returns the tree level where

the node belongs, and a parent function returns the node’s parent.

There are of course many ways to define such functions, depending on the objective.

The goal here will be that these functions map a linear read of the storage into a reasonable

progressive top-down refinement of the tree, and that nearby samples in the image domain

are also nearby on storage. The reason is that computer memory is read and written in units



58

of blocks of samples, not individual ones. Therefore, it is desirable to put samples that are

likely to be needed together near one another on the storage. In this chapter, I will discuss a

family of functions that have these desired properties.

4.1 Precision-resolution tree
Given a scalar field defined on a regular grid, the goal is to build a hierarchy that captures

both resolution and precision. I will first establish a set of rules that define such a resolution

tree, Tr. Although Tr does not model precision yet, it is an important starting point for the

unified precision-resolution tree, denoted as Tp
r . I will show that known hierarchies, such as

the hierarchical-Z space-filling curve [223] and multiresolution wavelet hierarchies [240],

are specific instances of Tr. Tr may be defined in many ways. Here, I propose a family of

trees that can be characterized by a positive integer d, which controls the tree’s branching

factor. In particular, I require the root of Tr to have 2d
− 1 children and every other internal

node to have at most 2d children. I will first describe the construction of Tr with d = 1

(Subsection 4.1.1) before generalizing to d > 1 (Subsection 4.1.2). Hereafter, I refer to a

data value stored at a specific grid point as sample, and as grid point when the value is not

relevant.

4.1.1 Formulation of resolution tree for d = 1

To construct the resolution tree, I need to construct a map that takes a grid point to a

node in the tree; this map consists of two functions. Without loss of generality, I describe

these two functions — f and h (and an auxiliary one, g, to aid the derivation of f ) — for a

2D grid, and illustrate them in Figure 4.2.

• The index function, f (x, y)→ i, maps the spatial coordinates (x, y) of a grid point to

an integer i ≥ 0 that represents the breadth-first traversal order of the corresponding

node in Tr.

• The parent function, h(i)→ j, maps the index, i, of a non-root node in Tr to that of its

parent, j ( j < i). With d = 1, each non-leaf node except the root has two children, so

the parent function is simply h(i) = ⌊i/2⌋.

• The level function, g(x, y)→ l, which maps the spatial coordinates of a grid point to
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an integer l ≥ 0 — the level of the corresponding tree node, with the convention that

the root is at level 0.

To understand g, consider traversing the tree in breadth-first order one level at a

time (see Figure 4.2). The set of nodes visited through level l constitutes a subgrid

Gl = { f−1(0), . . . , f−1(2l
− 1)} (the set of points with indices 0, . . . , 2l

− 1). By design,

Gl−1 ⊂ Gl and GL−1 = G, with L being the total number of levels, i.e., the complete grid is

traversed by the end. Going from G3 to G4 in the shown example, 23 grid points at level

4 and with odd x coordinate are introduced, whereas going from G2 to G3, 22 grid points

at level 3 and with odd y coordinate are introduced. This alternating pattern continues

and can be formalized using the notion of the Z index formed by interleaving the bits

of the two coordinates (known as the Morton code [292]). Assuming the interleaving

pattern yxyx . . . yx, Z indices that end with the bit 1 correspond to grid points with an odd

x-coordinate, or g(xodd, y) = L − 1 (L = 5 in this example). Similarly Z indices that end

with bits 10 belong to level L− 2, or g(xeven, yodd) = L− 2. In general, Z indices that have a

trailing bit pattern of 10...0 (one followed by m zeros) belong to level g(x, y) = L− 1−m.

Formally, I partition the n bits of Z into a prefix-1-suffix sequence, Z =P ++ 1 ++ S, where

++ is bit concatenation, the suffix S = 0...0 starts after the rightmost bit 1 in Z, and m is

the number of bits in S. If Z has no ones, Z =S, P is empty, and m = n.

Prop. 1. A grid point (x,y) with Z(x, y) = P ++ 1 ++ S belongs to level l = g(x, y) = L− 1−m of

Tr. The nested grid sequence G0 ⊂ · · · ⊂ GL−1 has L = n + 1 levels.

Let (xi, yi) be the grid coordinates of a node i and (x j, y j) those of its parent j. Since

h(i) =
⌊

f (xi, yi)/2
⌋
= f (x j, y j), in general the binary expansion of f (x j, y j) has one more

leading zero bit than that of f (xi, yi). Further, since g(xi, yi) = g(x j, y j) + 1, the binary

expansion of Z(x j, y j) in general has one more trailing zero bit than that of Z(xi, yi).

Therefore, f can be obtained by swapping the prefix (P) and the trailing zeros (S) portions of

Z = P++ 1++ S around the middle 1 bit. Effectively, the level-indicating bits (S) are brought

to the front, so that lower resolution grid points are traversed first in Tr.

Prop. 2. The index of a grid point (x,y), with Z(x, y) = P ++ 1 ++ S is f (x, y) = i = S ++ 1 ++ P,

and that of its parent is h(i) = ⌊i/2⌋.
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Exact calculations of f , g, and h for all the 16 grid points of a 4× 4 grid, as well as the

resulting Tr, are included in Figure 4.2.

4.1.2 Generalized formulation of resolution tree for d > 1

In general, a generic framework for a such resolution hierarchy, Tr, satisfies the following

properties.

• There is a bijective map,Md, from the set of points of a grid G to the set of nodes in Tr.

Md consists of an index function fd(x, y)→ i and a parent function hd(i)→ j. The root

node of Tr has 2d
− 1 children, and every other non-leaf node has at most 2d children.

• Each node in Tr is associated with a data value that represents some approximation of

the data. This data value may or may not be the same as the corresponding sample.

• The root node of Tr (at level 0) represents an approximation of the entire field as

a grid, G0, corresponding to a single value, whereas a fully refined tree represents

G exactly. Traversing Tr top-down from the root, the inverse map, M−1
d , can be

invoked on the nodes visited at each subsequent level l, yielding a nested sequence

G0 ⊂ G1 · · · ⊂ GL−2 ⊂ GL−1 = G of L grids, each providing an increasingly finer

approximation of the field represented by G.

The functions f , g, and h defined in Subsection 4.1.1 are hereafter referred to as f1, g1, and

h1, and can be generalized to fd, gd, and hd for any positive integer d. Although d can be

used purely to control the branching factor of Tr regardless of the dimensionality (the same

way a kd-tree, d = 1, branching factor 2 can be built on a 3D grid), letting d equal the

dimensionality of the data can be more intuitive and natural since doing so leads to common

types of wavelet subband decompositions.

Recall that g1 was defined by counting the number of trailing zero bits in Z. To

generalize, I instead count the number of groups of d trailing zero-bits (left-padding Z with

0s if necessary) and denote that number as md. Then, gd(x, y) = L − 1 −md = ⌈n/d⌉ −md

with L = ⌈n/d⌉+ 1 being the total number of levels in the tree and n the total number

of bits in Z. Note that when d equals the dimensionality of the data, n is a multiple of

d. To generalize the formulation of fd, I partition Z into Z = P ++ F ++ S, where S is the
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longest sequence of d×md trailing zero bits in Z, F is the next sequence of d bits, and P is the

remaining prefix of Z. If Z has no ones, Z =S and both P and F are empty, and md = ⌈n/d⌉.

Prop. 3. A grid point (x, y) with Z(x, y) = P++ F++ S belongs to level l = gd(x, y) = L− 1−md

of Tr. The nested grid sequence G0 ⊂ · · · ⊂ GL−1 has L = ⌈n/d⌉+ 1 levels.

Prop. 4. The index of a grid point (x, y) with Z(x, y) = P++ F++ S is fd(x, y) = i = S++ F++ P,

and that of its parent is hd(i) =
⌊
i/2d

⌋
.

For example, consider the tree with d = 2 for a 4 × 4 grid in Figure 4.3a. We have

Z(2, 2) = 1100. Here, P is empty, F = 11, and S = 00. Furthermore, m2 = 1 and therefore

g2(2, 2) = 4/2 − 1 = 1. Swapping P and S around F, we obtain f2(2, 2) = 0011 = 3. The

parent of this node has the index h2(3) =
⌊
3/22

⌋
= 0.

If the input grid G is in 3D, with M1, each subgrid Gi grows twice as large on the

next level (i.e., |Gi+1| = 2|Gi|), but only in one dimension at a time, similarly to a kd-tree.

With M2 instead, each Gi grows in two dimensions at a time similarly to a quadtree

and, therefore, Gi+1 = 4|Gi|. WithM3, Gi grows by 8 times like an octree, with expansion

happening in all three dimensions with each increasing level. Note thatM1 describes exactly

the hierarchical-Z space-filling curve [223] (here, I provide an alternative formulation),

whereasM2 andM3, respectively, describe the primal subdivision approach introduced

by [160], as well as the most standard type of multiresolution 2D and 3D wavelet subband

decompositions [270]. Thus, hierarchical-Z indexing can be considered a form of wavelet

decomposition but without actual data filtering (also known as the lazy wavelet transform).

Such concepts are unified in a formal framework in this study.

4.1.3 Precision-resolution tree

By definition, a Tr can be traversed only in the order of resolution, as the corresponding

nodes store data values at full precision. I next focus on incorporating precision to Tr to

form a precision-resolution tree, Tp
r . To achieve progression in precision, I first define the

concept of a bit plane: assuming all sample values {Vk} are P-bit non-negative integers, a bit

plane, Bi (0 ≤ i < P) is the set of bits (of the samples or transform coefficients) that share the

same bit position, i. With this definition, each of Tr’s nodes is split into a sequence nodes

in Tp
r and connect the sequence through a chain, such that each node in the sequence now
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encodes a bit of the original node in Tr. Such a chain connects the bits of a value from the

MSB (most significant bit) to the LSB (least significant bit). To finish the construction of Tp
r ,

let us bring over all the edges of Tr, using the MSB node of each sequence as a proxy to the

original node in Tr. Figure 4.3 visually demonstrates this construction.

If the sample values are non-negative floating-point numbers, I express all values in the

form Vk = 2EQk with a single exponent E and then consider the quantized integer values

Qk. I adopt the convention that B0 is the least significant bit plane, and define a precision

level, Bp, to be the set of all bit planes {Bi}, such that i ≥ P− p with P being the total number

of bit planes. Likewise, a resolution level Ll is the set of all grid points whose corresponding

nodes in Tp
r belong to levels that are at most l. Note that so far we avoided discussing the

sign bits, for simplicity. To handle sign bits, we can either treat them as being on their own

bit plane, or use negabinary base instead of the usual binary base to express the quantized

integer values, i.e., Qk =
∑
−2ibi, .

4.1.4 Approximations using valid cuts

With Tp
r defined, approximations to a scalar field in both precision and resolution can

be defined using the classical notion of a valid cut [40, 54] of Tp
r . Given a Tp

r and a subset C

of its nodes that contains the root, a cut is defined as the set of edges leaving C. The cut

is a valid cut if it does not contain two edges on the same path from the root of Tp
r to any

leaf. Figure 4.3 gives examples of two invalid cuts and a valid one. If C corresponds to a

valid cut, then C defines an approximation of the data in precision and resolution. In my

construction of Tp
r , obtaining a C corresponding to a valid cut is equivalent to obtaining an

approximation by always retrieving coarse-resolution and higher order bits first. Doing so

is desirable because coarse-resolution bits tend to contain more function energy and higher

order bits have bigger impact on error. Restricting the set of admissible approximations to

valid cuts of the precision-resolution tree also significantly reduce the search space for the

optimal approximation under certain constraints, thus making it more possible to devise

efficient algorithms to perform such a search. Finally, maintaining a valid cut in memory

is simpler compared to maintaining an arbitrary cut, since the former requires only one

“marker” on each path from the root to a leaf, whereas the latter requires specifying any

subset of the edges. Figure 4.4 shows an example of three different cuts that correspond to
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three different approximations in the precision-resolution space. The precision-resolution

tree is constructed so that any reasonable approximation in the precision-resolution space

can be realized by a cut of the tree.

4.1.5 Differences to classical trees

Traditional spatial hierarchies are k-d trees, quadtrees, or octrees [250, 251]. These trees

are most popular for the purpose of partitioning space into non-overlapping regions on

each level, with each region assigned to a node. A parent node’s region is divided into

2 (k-d trees), 4 (quadtrees), or 8 (octrees) regions, each assigned to a child node. In this

way, on each level, there exists a mesh where each cell corresponds to a node of the tree,

and a parent’s cell is the union of its children’s. A node’s value (i.e., a data sample) is

assigned to the corresponding cell: the mesh on each level is “cell-centered”. In contrast,

the proposed resolution tree (Tr) assigns values at the “vertices” and the corresponding

mesh is “vertex-centered” instead. Figure 4.5 illustrates this difference. Because of this, Tr

has the same number of nodes as the number of data samples, while the number of extra

nodes for kd-trees, quadtrees and octrees are 1, 1/3 and 1/7, respectively, (the overhead is

1/(2d
− 1) in general with d being the branching factor of the tree). These overheads affect

both storage of the tree as well as progressive streaming of tree nodes.

Beside the difference in topology, there is also a difference in the way node values are

computed from the original sample values. From the linear algebra perspective, if the

original samples and the tree node values are arranged in vectors x and y, respectively, then

oftentimes y is obtained through a linear transformation of x, i.e., y = Ax, using some matrix

A. Because kd, quad, and octrees have more nodes than data samples, the corresponding A

matrices are non-square and hence necessarily singular (i.e., the basis is overcomplete). In

contrast, the transformation matrix for resolution tree is square and often invertible. This is

another way of saying that resolution trees have the same number of nodes as the number

of data samples. A large class of such a transform is the discrete wavelet transform. Even

if A is understood to be a general transformation (not necessarily linear), it is also often

invertible as well in the case of resolution tree. I will discuss such transformations in more

detail in Section 4.2.

Furthermore, because a resolution tree is “vertex-centered”, interpolation is easier. To
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interpolate the value at a point where there are not enough local fine-level nodes, k-d, quad

and octrees require at most 3d lookups of nearby ancestor nodes per level, with d being the

dimension. With a resolution tree, since a node shares the same spatial location with its first

child, interpolation requires only 2d lookups per level, provided that the transformation

method used is interpolating, i.e., nodes at the same spatial location share the same value.

Figure 4.6 illustrates this difference for the case of a binary tree and a resolution tree in

1D. A similar analysis is given in [160], where the authors use the term “dual tree” for the

binary/quadtrees and “primal tree” for the slanted versions.

The last major difference between resolution trees and classical space partitioning trees

is related to how approximations to the original field can be formed. With resolution trees,

approximations are nicely modeled using the well-established concept of a cut [41, 54]

(Section 4.1). With classical trees, obtaining an approximation instead corresponds to

cutting the tree and discarding all internal nodes, whereas with resolution trees, all nodes

above the cut define the approximation. Resolution trees also allow forming more flexible

approximations. An octree, for example, only allows decimating all dimensions by 2 on

each level, and offer no easy way to decimate different dimensions by different factors. Such

capability is important for many types of data where the sampling pattern is “anisotropic”,

i.e., the dimensions are sampled at different rates. In contrast, resolution trees do not enforce

this coupling, and allow arbitrary decimation of the dimensions, totally independent of one

another. This is because, on the first level, the different subbands branch off the root node to

form their own subtrees. Each such subtree corresponds to a single subband type that can

be traversed and refined independently. I will discuss this in more detail in Subsection 4.1.7.

4.1.6 Indexing template and generalized precision-resolution hierarchy

Formerly, an indexing template is a string made from English letters and colons (:). Each

letter represent a dimension of the data, and each is repeated a number of times equal to

the number of bits needed to index that dimension. For example, the indexing template

for a 3D dataset of dimensions 384 × 384 × 256 will contain 9 x’s, 9 y’s, and 8 z’s in some

order, separated by colons e.g., : yx : zyx : zyx : zyx : zyx : zyx : zyx : zyx : zyx. This is a

generalization of the concept of interleaved coordinate such as Morton code, where I have

introduced the colons to signify separations between resolution levels. Whereas Morton
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codes imply round-robin arrangements of the letters (e.g., xyzxyz) to promote spatial locality,

an indexing template allows more freedom in arranging the letters to optimize for spatial

locality and other trade-offs. Note that for non-power-of-two-dimension grids, “virtual”

grid points may be inserted so that the dimensions become powers of two, construct Tr,

and then discard the virtual nodes.

I use the term template part to refer to each colon-separated part of the full template. Let

T denote the very first part of the template, one that comes before the first colon; this part

can be empty if the first character in the template is a colon. To form a linear index of a

grid point, as before, I interleave its coordinates in all dimensions following the indexing

template. Then, I identify the longest sequence of parts at the end that are all 0, and denote

it as S. The length of such a sequence (in number of parts) is the resolution level of the

grid point. Let F denote the part immediately to the left of this sequence, and P denote the

sequence of parts between T and F. Note that none of these sequences include colons, nor

do they include English letters – they are sequences of bits. To form the linear index using a

function f that acts on the interleaved coordinate, I swap the two sides of F while keeping T

intact, namely, f (T ++ P ++ F ++ S) = T ++ S ++ F ++ P, with ++ being string concatenation.

This is a generalization of the formula discussed in Subsection 4.1.2, with the main

difference being that the resolution levels are not specified by the number of groups of zero

m bits, but by the number of groups of zero bits of sizes m0, m1, . . . , which are the lengths

in characters of the template parts from right to left. The reason T is kept intact is that

oftentimes, it is not desirable to construct a hierarchy with one single grid point at the root,

so the indexing template supports this idea by stopping the creation of increasingly coarser

resolution levels as soon as the last colon from the right is reached. This corresponds to first

dividing the whole domain into partitions whose dimensions are determined by the prefix

T, then constructing a single tree for each partition, resulting in a global forest. Figure 4.7

gives an example of using an indexing template to compute the linear index for grid points.

A general indexing template allows building a resolution tree by combining different

maps. The construction may start withM1, but for the next level switch toM2, followed by

M3, and so on. One potential use case is when the input grid size is highly non-uniform,

e.g., 32 × 32 × 512, in which case, such interleaving patterns as : z : z : z : z : zyx : zyx :

zyx : zyx : zyx may be picked which consists of four levels ofM1 (on the : z : z : z : z part)
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followed by five levels ofM3 (on the zyx : zyx : zyx : zyx : zyx part). The previous example

also serves to highlight the fact that in addition to d, theMd maps are also parameterized

by the indexing template part used to form Z. Furthermore, when data filtering such as the

wavelet transform is used, a mismatch between d and the dimensionality of the data can

lead to a Tr in which parent-child relationships between nodes do not reflect the correlations

between corresponding coefficients. For example, if a 2D wavelet transform is performed

such that the resulting subbands are those that are formed with f1, a tree built from a map

that combines f1 and h2 may work better than one built fromM1 = ( f1, h1) because the

former groups wavelets with the same orientation at different scales.

If d is fixed and theMd map is used exclusively across all resolution levels, the resulting

resolution tree always have a common property: a node and its parent are always in the

same subband type (but with resolution levels differ by 1), except possibly for the root

and its children – when d > 1, the root splits into 2d
− 1 children, each with a different

subband type. The total number of subband types is therefore always 2d
− 1. With a

general indexing template, however, constructing such a hierarchy with the same property

is no longer possible. This is because, unlike for theMd family of maps, with a general

indexing template, the levels often do not have the same number of subbands, so there is no

way to form same-subband parent-child relationships. Instead, the resolution tree is built

bottom-up using a recursive procedure: for each resolution level from finest to coarsest,

partition the domain into bricks of dimensions that match the corresponding template part,

build a single resolution tree for each brick, then repeat the process for the set of root nodes

for the next coarser level. When the local, per-brick trees are merged, the local connections

are kept intact. Figure 4.8 illustrates this process.

The merged tree T̃p
r can be considered an approximation to the Tp

r that would have

resulted from a non-bricking approach. Evidently, these are different trees, which may

produce approximations corresponding to subtrees with different number of nodes for two

identical queries. In particular, a region-of-interest (ROI) query can produce a smaller cut

on a Tp
r built from merging local trees with bricks of the same size as the query region. One

may expect T̃p
r to produce approximations with either significantly fewer or significantly

more nodes compared to Tp
r , depending on the size of the query’s ROI. However, having

computed the exact number of nodes in several approximations for both trees, across a wide
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range of brick and ROI sizes, I observe that the differences are almost always negligible, and

only matter somewhat for very small query regions (e.g., less than 203 in 3D). The intuition

is that the number of nodes in the resulting cut, regardless of tree types, closely traces the

size of the query region, and the differences quickly become negligible as the ROI grows.

This observation suggests that T̃p
r and Tp

r are functionally very similar.

In general, the number of resolution levels contained within a brick can be different

(smaller) than what the dimensions of the brick permits. For example, a brick can have

dimensions 24
× 25
× 26 but only one resolution level is subsumed, usingM2 along x and

y, creating four subbands. Figure 4.9 illustrates this situation from the indexing template

point of view. Consider bricks on a resolution level l: the bits of the indexing template are

divided into three parts, from left to right: Pl, Bl, and Sl. The suffix Sl consists of l template

parts, and is always 0. The intra-brick indexing part Bl has length b (excluding the colons),

with b denoting the base-2 logarithm of the size of each brick in number of samples. The

bits within Bl index the grid points within a level-l brick, while the preceeding bits of the

prefix Pl index the bricks themselves on the same level. Compared to Bl, Bl+1 (for bricks on

the next coarser level) is shifted to the left by Ll, the length of the template part on level l.

Because of this, each level-(l + 1) brick is parent to 2Ll bricks on level l. Note that in general,

a brick can also subsume more than one resolution levels, in which case Bl is shifted by

more than one template part at a time.

A frequent type of query in visualization and analysis is to retrieve a region of interest

(ROI) in space, which corresponds to retrieving the corrresponding nodes in Tp
r . The most

straightforward way to support this capability, in the presence of (potentially variable-rate)

compression (which precludes implicit on-disk indexing), is to maintain pointers to the

locations of all the nodes on disk. Although such a solution is very costly, this cost may

be amortized by storing one pointer for every brick of nodes (or samples) instead. On

each level, a brick is a set of Bx × By × Bz contiguous samples in space. Partitioning the

domain into bricks can be done either before or after the construction of Tp
r (and any data

transformation). In both cases, such partitioning not only helps with ROI queries but also

can speed up the construction of Tp
r , since smaller grids are better suited for caching and

parallelization. A brick is a unit of data transformation (i.e., samples within a brick are

transformed together); it is a grouping of adjacent samples in space (along all dimensions).
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Transforming each brick independently facilitates cache-friendly and parallel data transform

and reconstruction, as well as efficient random access.

If brick partitioning is done after data transformation, there can be data dependencies

among neighboring bricks, which complicates data reconstruction. For example, if wavelet

transform is used, the support of each wavelet basis function may span across brick

boundaries, requiring neighboring bricks to recover samples within a brick, thus negatively

affecting I/O and decoding time. On the other hand, forming bricks before constructing

local hierarchies avoids such issues while further facilitating parallelization during Tp
r

construction [147], as bricks are now completely independent. The downsides of this

brick-first approach are that a forest of (shallow) local hierarchies is created instead of

a single global hierarchy, and the transform coefficients at the brick boundary may be

artificially large, resulting in blocky artifacts during reconstruction (I present a solution for

the latter in Section 5.1).

Compared to the generalized resolution tree, this hierarchy of bricks is often the more

useful structure to work with. This is because the nodes of the resolution tree correspond

1-1 to the grid points, forcing unnatural parent-child relationships when the tree is created

through merging, or when the indexing template has varying-length template parts, due to

different number of subbands across resolution levels. In contrast, each brick subsumes

all the subbands, avoiding the need for the resolution levels to have the same number of

subbands. To generate the brick-based hierarchy from the generalized resolution tree, every

time a parent node is created, I do not promote one of the children node (except at the leaf

level), but rather create a new node parent node and then attach 2d
− 1 other new nodes

around it, one for each subband. This process is demonstrated in Figure 4.10. The new

parent node together with the 2d
− 1 new nodes span form a parent brick on the next coarser

level. As before, this tree can still be augmented to add the precision nodes.

When accessing low-resolution data, the indexing template is very important in

determining which dimensions are refined first and how the dimensions are refined

together. For example, consider a dataset consisting of a number of images stacked on top

of one another along the z axis. If z appears toward the end of the template, the refinement

pattern favors refining in x and y first before refining in z. In other words, each image slice

is refined first before the whole stack is refined. This pattern may or may not be amenable
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to the actual access patterns during regular usage of the data. For example, slicing the

image stack vertically (across all images of the stack) can only be done at finer resolution

levels (since z appears only at the fine-level parts of the indexing template). If this access

pattern is common, the current indexing template should not be considered since it results

in unneccesary data movements. Instead, in this situation, one should consider a template

where z appears closer to the beginning of the indexing template. Of course, such a pattern is

again suboptimal if the image stack is often accessed one image at a time, since z appearing

early in the template means that refinement in z is necessary before further refinements in x

and y. In general, the “best” template to use depends heavily on what access patterns are

common on the data, and how common each pattern is.

4.1.7 Subband decompositions

In signal processing, a subband refers to a frequency band obtained by dividing a signal

into different frequency ranges using a set of filters. In 1D, this is achieved using a pair

of filters, a low-pass filter that extracts a low-frequency subband and a high-pass filter that

extracts a high-frequency subband. This process is known as subband decomposition or

subband filtering. The filters are applied to the signal at different scales, resulting in a

hierarchical set of subbands with varying levels of detail and resolution. Each subband can

be analyzed separately and is characterized by its own frequency range and energy content.

The decomposition of a signal into subbands allows for more efficient signal processing and

compression, as different subbands may have different levels of importance or relevance to

a particular application. The subbands can also be used for various signal processing tasks

such as denoising, feature extraction, and classification. In 1D, a pair of filter creates two

subbands: one containing low-pass filtered samples (L) and the other high-pass filtered

ones (H). In higher dimensions, more subbands may be created (e.g., four in 2D: LL, LH, HL,

HH, and eight in 3D: LLL, LLH, LHL, LHH, HLL, HLH, HHL, HHH). To create subbands in

higher dimensions, filters are applied to each dimension of the higher-dimensional signal.

For example, for a 2D image, a wavelet transform can be used to create subbands in both

the horizontal and vertical directions. This results in a set of subbands with varying levels

of detail and resolution, each corresponding to a different frequency range in both the

horizontal and vertical directions.
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Subband decomposition can happen without actual filtering of the sample values (this is

also called the lazy wavelet transform. The mapsMi (i = 1, 2, . . . ) previously introduced can

separate the grid samples into subsets, each belonging to a resolution level. On each level,

the samples are further separated into subbands, each contains a subset of grid samples

on the same level, with each subset spanning the entire spatial domain. Using the map

Md, the subband number is the rightmost group of d-bits that are not all zeros in the

interleaved index Z. Since there are d bits in the group, there will be 2d
− 1 subbands on the

corresponding level (excluding bit pattern 0...0, because this belongs to another level by

definition). In general, with an indexing template, the subband number is specified by the

part F that immediately follows the suffix sequence S of all-zero parts.

Grid points sharing the same suffix P and the same subband part F are on the same level

and in the same subband. All grid points in a subband form a sub-grid, whose first starting

point, size, and spacing are completely determined by the indexing template. This is best

explained with an example. Assuming the indexing template is : xyz : xyz : xyz : xy and

consider the grid points whose interleaved coordinates are of the form ∗ ∗ ∗ : 101 : 000 : 00.

These grid points are on level 2 (from the 000 : 00 suffix), subband 5 (101 in binary). The

first grid point in this subband has interleaved coordinate 000 : 101 : 000 : 00, which can be

deinterleaved using the indexing template to obtain the 3D coordinates x = 4, y = 0, z = 2.

To determine the spacing of grid points in this subband, since the suffix S = 000 : 000

corresponds to the xyz : xy part of the template where x and y each appears twice and z

appears once, in between consecutive grid points of the subband, there are 22 = 4 grid

points in x, 22 = 4 grid points in y, and 21 = 2 grid points in z. Finally, the size of this

subband is determined by the prefix P = ∗ ∗ ∗ which corresponds to the xyz prefix of the

indexing template: the subband has dimensions 2× 2× 2.

To reconstruct an approximation of the data with non-uniform downsampling factors

along the dimensions, it is straightforward to determine which subbands to fetch data

from. Suppose the downsampling factors create a subgrid Go (for output subgrid), and

the subgrids occupied by the subbands are G0, G1, . . . . By intersecting each Gi with Go, it

can be determined which subbands should be fetched from; a subband is needed when

its subgrid overlaps with Go, otherwise it can be skipped. Furthermore, a subband may

not fully needed; this happens when Gi intersects with Go but has a smaller spacing along
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at least one dimension. While it is always possible theoretically to obtain a cut on the

(precision-)resolution tree that includes only the required samples on each subband, in

practice, the fact that nearby samples are often grouped together for compression purposes

and that random access of samples is not trivial when using variable-rate compression,

make obtaining such a precise cut much more difficult.

There are many subband decomposition patterns. Figure 4.11 gives two examples: k-d

tree-style and quadtree-style nonstandard decompositions, using theM1 andM2 maps,

respectively. Figure 4.12 contrasts nonstandard and standard subband decompositions,

and introduces frequency subband decompositions. The more popular nonstandard

decomposition performs transforms in all dimensions one each level, and only recurses

on the coarsest subband on each level. In contrast, the standard decomposition performs

transforms on all levels along one dimension at a time. The standard decomposition

creates more subbands and is more expensive to perform; it also creates “rectangular”

basis functions, whereas the nonstandard subband decomposition only creates “square”

basis functions. Higher-dimension basis functions are created using Kronecker products of

one-dimensional basis functions. The frequency decomposition creates the same number of

subbands as the number of samples. For a 1D signal of length 2n samples, 2n subbands are

created, one for each sample. In higher dimensions, 2nd subbands are created, with d being the

dimensionality. The proposed indexing template captures both nonstandard and frequency

(but not the standard) subband decompositions. From the indexing template point of view,

the frequency subband decomposition is created by repeating letters for the dimensions on

each level. Standard and nonstandard subband decompositions are typically created by

discrete wavelet transforms (DWT), while frequency subband decompositions are created

by orthogonal block transforms such as discrete cosine transform (DCT), Walsh–Hadamard

transform (WHT), Slant transform (ST), high correlation transform (HCT), discrete Hartley

transform (DHT), or Gram polynomials (GP) [169, 301]. Here, the term frequency is to be

interpreted as one of actual frequency (in case of the DCT), sequency (“discrete frequency”,

in the case of the WHT, ST, HCT, or DHT), or polynomial order (in the case of the GP). I

discuss such transforms in more detail in the next section.
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4.2 Data transformation
Recall that each node in a Tr is associated with a data value, which is a transform coefficient

computed from the original grid’s sample values. Different transforms/filtering methods can

be useful in different cases, depending on how the type of analysis later performed on the

data. The most common purpose for data transformation is to decorrelate the original data

samples to make the data more amenable to compression, but other purposes, such as to

retain topological features, exist. In general, there are three types of transform supported for

the proposed precision-resolution tree: wavelet transforms, (data-independent) orthogonal

block transforms, and mathematical morphology operators. The identity transform is also

an option, in which case the resulting hierarchy is subsampling-based.

Subband transforms are computed by convolution of the input signal with a set of filters

and decimating the results. Each decimated signal captures a portion of the frequency

spectrum, called a subband. The set of filters is called a filter bank. A general multi-channel

filter bank can be implemented by iterating a 2-channel filter bank, creating a cascaded

system. A filter bank has two parts: an analysis part that decomposes the input signal into

multiple signals, one for each subband, and a synthesis part that combines the output of

the analysis part into a single signal. An important property of such a filter bank is perfect

reconstruction (PR), i.e., the output of the synthesis part is the same as the original signal.

Common designs for perfectly reconstructed filter banks are quadrature mirror filters (QMF)

and conjugate mirror filters (CMF), of which the latter is more useful, since it allows for

designing finite PR filters with length greater than 2. If filter coefficients are chosen properly,

a iterating a filter bank indefinitely using a pair of CMF gives rise to an orthogonal wavelet

system [51], where the input signal is projected into a multiresolution basis consisting of

orthonormal scaling and wavelet functions at multiple scales. If the scaling and wavelet

functions associated with the synthesis part are different from those of the analysis part, we

instead have a biorthogonal wavelet system [47], where the synthesis scaling functions are

orthogonal to the analysis wavelet functions and vice versa. Biorthogonal wavelets arise

from biorthogonal filter banks, with carefully chosen filter coefficients; they can also be

computed using the lifting scheme [53]. A filter bank gives an O(N) algorithm to compute

the discrete wavelet transform (DWT), called the fast wavelet transform (FWT). The DWT

separates a 1D signal into an average (even) half and a detail (odd) half. The even part
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becomes the next coarser resolution level while the odd part becomes the difference between

the next coarser resolution level and the current resolution level. To reconstruct the signal,

the two parts are combined. It is possible to use any cascaded PR filter bank, and thus

any DWT, to compute transform coefficients for the proposed hierarchy. The only two

requirements are that the filter bank has perfect reconstruction, and that the transform is

nonredundant, meaning the number of transform coefficients are the same as the number

of input samples. While not all such filter banks result in a DWT, it is often useful to

choose the filters so that they correspond to either an orthogonal or a biorthogonal wavelet

system, since the wavelet basis functions help understanding the behavior of iterating such

a cascade of filtering and subsampling steps.

Block-based orthogonal transforms can also be viewed as subband transforms. Well-

known examples inclue the discrete cosine transform (DCT), Walsh–Hadamard transform

(WHT), Slant transform (ST), high correlation transform (HCT), discrete Hartley transform

(DHT), or Gram polynomials (GP). Details about these transforms can be found in [43, 169,

301]. Computing a DCT on non-overlapping blocks is the same as convolving the image

with the block DCT basis functions and then subsampling by a factor equal to the block size.

The subbands that result from this are shown in Figure 4.12 (far right). In the case of the

DCT (which is really the discrete Fourier transform under a certain periodicity assumption),

each subband corresponds to a frequency, since each basis function is a (discretized) cosine

wave. For other transforms, frequency is replaced by sequency or polynomial order, but all

are understood to refer to different scales at which information is captured. Compared to

the WHT, ST, and HCT, the DCT has been shown to be superior for the task of lossy data

compression [43], due to the fact that its basis vectors are close to those of the (optimal)

Karhunen—Loève Transform’s (KLT) of first-order Markov processes when the correlation

coefficient approaches unity [44]. As such, DCT is used in the JPEG image compression

standard [298]. More recently, Lindstrom [169] shows that these orthogonal block transforms

can be unified using a single parameterized matrix for 4-sample block, and proposes a new

transform of the same family, based on the Gram polynomials (aka discrete Chebyshev

polynomials [33,214]), that achieves better decorrelation effiency and coding gain compared

to the rest, including the DCT. All of these orthogonal block transforms can be used in

the proposed hierarchical model, noting that they need to be performed on blocks whose
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dimensions are powers of two. Compared to wavelets, orthogonal block transforms tend to

exhibit more blocky artifacts in the reconstruction.

Beside linear filters, another example of subband transforms is nonlinear mathematical

morphology filters [230], which are built based on two operators: infimum (min) and

supremum (max). An infimum filter replaces two samples (a, b) with, for example,

(min (a, b), b− a), while a supremum filter replaces (a, b) with (max (a, b), b− a), so that the

number of output samples is the same as the number of input samples, while the transform

is perfectly reversible. From these basic operators, one can define erosion (removal of small

structures) and dilation (enlargement of structures), which in turns lead to “opening” and

“closing” transformations. Compared to linear transforms which tend to “blur” the data,

such transformations tend to better retain the shape, size, orientation and connectitivy

of features in the data. Repeated applications of the min or max operator removes the

fine structures, thus corresponds to low-pass filtering. High-pass filter is achieved by

complementing the low-pass information. Thus, such transforms also result in a subband

decomposition. Note that to inverse transform a max hierarchy, one needs to encode, for

each parent node, which sibling is the largest among its children using d additional bits,

assuming theMd map. When the task is to detect the presence of isocontour components,

as shown in Figure 4.13 for example, averaging filters such as wavelets may not be ideal

since they can lead to both false positives and negatives, forcing exploration of the full

resolution data to guarantee no missing information. In such cases, a max hierarchy can

yield coarse approximations with false positives but no false negatives, and therefore entire

empty regions can be skipped since no new features can be created by refining those regions.

4.3 Multi-precision encoding
After a hierarchy is constructed and its samples transformed, the transform coefficients

can be compressed. In principle, any compression scheme that operates by bit plane can be

used. That is, it is required that the outputs of the compression step are bits that can each be

associated with a bit plane. Not all compression schemes fit this requirement; for example,

Huffman coding produces bits that cannot be assigned to bit planes. The ones that fit in

this framework are typically called bit plane coders; examples are EZW [261], SPIHT [249],

SPECK [227], EBCOT [281], ZFP [169], or TTHRESH [12]. “Classical” entropy coders
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work by adaptively quantizing transform coefficients – typically finer-scale coefficients

are quantized more than coarse-scale ones. Ideally, it is desirable to not spend any bits to

encode coefficients that are quantized to zero. To achieve this, it is typical for the encoder to

send to the decoder some kind of a significance map to identify which coefficients are zero.

For example, JPEG [298] does this using run-length encoding. This method performs poorly

at low bit rates, due to the fact that the significance map always needs to be decoded first

before any actual value bits.

Instead of encoding and sending a significance map, most bit plane coder works by

the principle of successive approximation quantizer: the transform coefficients are tested

against a series of progressively smaller thresholds, each is half the magnitude of the

previous. If the coefficients are ordered so that their magnitudes are approximately sorted

from high to low, these threshold tests will have longer runs of 0s i.e., once a coefficient is

smaller than the current threshold, some subsequent coefficients that are smaller will also

be. In the wavelet domain, such an order can be obtained by visiting the subbands from

coarse to fine, leading to trees whose roots are in the coarsest subbands. This is the main

idea behind the “zero tree” family of coders, including EZW, SPIHT, SPECK and SBHP.

Often, during the encoding (or decoding) process, the coefficients are divided into two

lists: a dominant list consisting of coordinates of coefficients not yet found significant, and

a subordinate list considting of magnitudes of coefficients already found to be significant.

Once a coefficient is found significant, it is moved from the former to the latter list, and its

subsequent bits are coded verbatim, since they are more or less random. Instead of zero

trees, arithmetic coding can also be used to exploit spatial correlation between same-order

bits of nearby coefficients; this is the approach taken by EBCOT [281] in JPEG2000 [264,282].

For each bit plane, EBCOT (Embedded Block Coding with Optimized Truncation) works

in three passes: a significance pass that identifies the significant coefficients, a magnitude

pass that encodes the significant coefficients and a cleanup pass that encodes the remaining

insignificant coefficients. The magnitude pass uses CABAC (Context-Adaptive Binary

Arithmetic Coding) [185] which adapts the probability of each symbol (either 0 or 1) to

the local statistics. Zero tree based and arithmetic coding based techniques loop over the

data multiple times per bit plane, which is costly. Instead, ZFP [169] performs only one

pass through each bit plane, by assuming that the signigicant and insignificant coefficients
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are always perfectly separated by a single coefficient (the last significant coefficient in the

bit plane), and simply encodes the position of this coefficient. This scheme trades some

compression effectiveness for massive performance increase.

All of the above coders are examples of set partition coding [228, 229], or more generally,

group testing, in which the significant coefficients are picked out from the set of not yet

significant coefficients using a series of tests against a current threshold. The result is a

sequence of bits that together form a bit plane associated with the current threshold, before

the threshold is halved and subsequent tests produce the next bit plane. The resulting

bit stream has the embedded property, i.e., any prefix of it can be decoded to produce an

approximation of the coefficients; increasingly longer prefixes result in increasingly better

quality (and lower error as each bit plane reduces the reconstruction error by half). This

property is sometimes also called quality-scalable (as opposed to resolution-scalalbe) in the

image compression literature. Embedded coders avoid the need to first transmitting a

significance map, so they perform well even at low bit rates. Furthermore, downstream

processing can work even on partially-decoded bit streams, removing the need to decode

everything in advance.

For effective compression, it is necessary to group multiple coefficients and compress

them together. In the proposed framework, a block is the unit of compression (i.e.,

transformed bits in a block are compressed together); blocks are formed by grouping

adjacent coefficients. The grouping can happen either in the spatial domain or in the tree

domain, in either breadth-first or depth-first order. Grouping in spatial domain is best done

when no previous transformation is done (i.e., using the identity transform), so that the data

samples have not been decorrelated, and the compression step performs decorrelation on

its own. This is the approach taken by ZFP [169]. Grouping in the tree domain is best done

after the data has been decorrelated, e.g., using a wavelet transform. In the tree domain,

breadth-first grouping relies on exploiting redundancy among neighbor coefficients on

the same subband. JPEG2000 [264] follows this approach. On the other hand, depth-first

grouping [249] exploits local properties that relate ancestors with descendants nodes across

subbands at corresponding spatial locations. In particular, the ancestor nodes tend to be

larger in magnitude, resulting in bit planes that are conducive to compression since they

contain runs of zero bits for the nonsignificant coefficients. Different ways of grouping may
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be preferred for better compression, but may also preclude certain types of queries due to

undesired couplings across bit planes and/or resolution levels, since the blocking method

may affect the size of the resulting subtrees corresponding to approximations produced for

certain query types. As an example, for query that needs more precision than resolution,

depth-first (by resolution) and grid-domain (by space) blocking are not desirable since they

tend to conflate samples across resolution levels.

In the proposed framework, the transform coefficients in each brick are partitioned into

blocks and compressed as blocks. A block can also be as large as the brick itself. Note that

this blocking behavior can be modeled directly in Tp
r by letting each node represent a bit

plane from not a single but a group of samples. A brick is then a collection of contiguous

blocks. A block, when encoded, produces multiple bit planes. Each such bit plane within a

block is encoded and decoded as one unit, i.e., from the perspective of reconstructing an

approximation from a tree cut, a unit cannot be partially decoded. However, a block can

be partially decoded: the bit planes of the block can be decoded at different times and not

necessarily all at once, even though at encoding time they were produced together in one

sequential process. In practice, this means that the decoder has to store certain decoding

states to be able to resume at a later point. It is also possible to use different encoding

schemes for different blocks, which would typically require keeping a certain amount of

metadata to indicate the scheme for each block. However, it is reasonable to expect that,

in practice, the total number of schemes would be small. Thus, the cost of storing this

metadata would be quite minimal and well amortized over the size of a brick (e.g., 643

coefficients) or a block (e.g., 43 coefficients).

In terms of indexing, suppose that the exponents for all transform coefficients range from

2emin to 2emax , the indexing template for the compressed bits of Tp
r can be formed by splicing

the bits representing the bit plane (a number between emin and emax) with Z, the indexing

template for samples in the spatial domain. The combined index thus gives an address

for every bit in the encoded dataset. This index can further be partitioned into blocks or

files, which facilitates data lookup in a wide range of underlying storage architectures, from

traditional file systems to modern object storages on cloud platforms.
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4.4 Linear storage model
The compressed blocks must be sorted in some order to be serialized to disk. Each block

has a spatial index Is (obtained by traversing the resolution part of the tree in some order)

and a bit plane index Ib. Let us consider an ordering scheme where the bits of Is and Ib are

interleaved following some pattern. For example, if Ib is put after Is, let the bit planes for a

block be stored contiguously on disk. On the other hand, if Ib is inserted in between the

bits of Is, a bit plane will span multiple blocks on disk before moving to the next bit plane.

Depending on how the expected access pattern is, one choice may be more preferred than

the other.

In practice, disk I/O usually happens in big chunks of bytes, which I model using the

concept of a chunk, the smallest unit of I/O. A chunk can be defined to have either a fixed size

in bytes or a fixed extent in some space. Storage of chunks into files also has implications for

performance. A large file can slow down chunk lookup (as there are too many chunks) and

reduces parallelism during file I/O due to potential data races caused by multiple threads

writing to the same file, especially in a distributed setting [148]. On the other hand, having

too many small files puts pressure on the file system and increases the amount of metadata

fetched at read time. In the proposed framework, two parameters control these trade-offs:

the number of chunks in a file and the ordering of chunks. An optimized chunk ordering

can minimize disk seek latency and take advantage of the operating system’s prefetching.

A chunk is out unit of I/O (i.e., bits in a chunk are retrieved together), to model real-world

block-based I/O devices such as a disk. Like a block, a chunk is also grouping of bits in

the same 2D space where bits are grouped for compression, but the grouping is done at

block boundaries (since bits within a block need to be decompressed together). Chunks are

themselves organized in files. How chunks are mapped to files have significant performance

implications, as it affects chunk lookup time, fetching time (considering both disk seek

latency and prefetching), parallel I/O, and file system overheads.

It is also important to consider indexing for random access of levels and bit planes, as

well as of blocks, bricks, chunks, and files. If few chunks are included in a file, a simple

array of IDs and file offsets would suffice for random access of chunks. When the number of

chunks per file is large, however, a B-tree [15] could perform better. Likewise, whether a file

can be quickly accessed depends on the number of files per directory, which, if too large, is a
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bottleneck during file lookup. All such choices are parameters to the proposed data model.

In summary, I have proposed a family of hierarchical data models with various

free parameters. Beside the choices for the mapping and bit interleaving pattern when

constructing the precision-resolution tree, design choices can be made for all of the above

considerations, ultimately describing a family of physical hierarchies. Certain parameter

choices lead to known data representations in the literature. For example, IDX [223] uses

one brick the size of the entire grid and builds one tree usingM1 with no data filtering.

ZFP [169] builds no tree (0 levels), uses grid-based blocking, and encodes each block using

the ZFP encoder. JPEG2000 [264] uses the term tiles to refer to my bricks, filters data with

wavelets, uses depth-first blocking and refers to each block as a code block, and encodes

each block using its own EBCOT [281] encoder. Finally, the recently proposed system

in [188] also defines blocks, bricks, and pages, with semantics that map very well to my

blocks, bricks, and chunks. Certain combinations can be intriguing, such as encoding

JPEG2000’s individual resolution levels using ZFP, or using the ZFP encoder as a lightweight

replacement to EBCOT to encode wavelet coefficients.
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Figure 4.1: Three main views of a discrete scalar field: image, tree, and linear storage. Three
functions, lvl, id and parent, related these three views. There are many ways to define such
functions. In this example, the discrete field is a 4× 4 2D image, the sample at coordinates
(2, 2) is at tree level 1, its linear index is 3, and its parent on the tree has index 0.
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(0, 0) 0000: 0 ++ ++ 0000 0000 ++ ++ 0 0 -
(1, 0) 0001: 1 000 ++ 1 ++ ++ 1 ++ 000 4 8 4
(2, 0) 0100: 4 0 ++ 1 ++ 00 00 ++ 1 ++ 0 2 2 1
(3, 0) 0101: 5 010 ++ 1 ++ ++ 1 ++ 010 4 10 5
(0, 1) 0010: 2 00 ++ 1 ++ 0 0 ++ 1 ++ 00 3 4 2
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(3, 1) 0111: 7 011 ++ 1 ++ ++ 1 ++ 011 4 11 5
(0, 2) 1000: 8 ++ 1 ++ 000 000 ++ 1 ++ 1 1 0
(1, 2) 1001: 9 100 ++ 1 ++ ++ 1 ++ 100 4 12 6
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(2, 3) 1110: 14 11 ++ 1 ++ 0 0 ++ 1 ++ 11 3 7 3
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Figure 4.2: Illustration of a resolution tree, Tr, for a 4× 4 grid and parameter d = 1, which
leads to a branching factor of at most 2. The figure tabulates the Z-indices and the proposed
bit manipulations thereof, leading to the functions f , g, and h, used for constructing the tree.
The sequence of grids Gi shows the nested sub-grids arising from the top-down traversal
of the tree. The nodes of the tree and the corresponding grid points are labeled by their
indices (the output of f ) and colored based on their levels (the output of g).
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Figure 4.3: The input is a 4× 4 grid (a) from which a Tr (b) is constructed using d = 2. Then,
Tr is extended to form Tp

r (c) by adding nodes representing bit planes (the blank nodes)
together with necessary edges (in red). The shaded regions correspond to three invalid cuts
in (c) and one valid cut in (d). The three cuts in (c) are invalid since each shaded region
intersects at least one path from the root to a leaf more than once.
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Figure 4.4: Three different cuts of the same precision-resolution tree and the corresponding
approximations. Approximation A has high resolution but low precision. Approximation B
has high precision but low resolution. Aprroximation C has middle precision and middle
resolution. Any reasonable approximation in the precision-resolution space can be realized
by a cut of the precision-resolution tree.
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Quadtree Resolution tree

Figure 4.5: Quadtrees put each inner node at the center of its children’s bounding box,
while resolution trees put it at the location of its first child. In this way, resolution trees do
not have extra nodes compared to the number of samples.

Binary tree Slanted binary tree Resolution tree

ED

CA B

Interpolation in a pruned binary tree

BA

BA

A

Interpolation in a pruned resolution tree

Figure 4.6: The proposed resolution tree can be obtained from “slanting” a binary tree in
1D, then fixing the edges. Similar slanting operations on quadtrees and octrees work in
higher dimensions. In terms of interpolation from a pruned tree, the binary tree requires
3 lookups of previous-level nodes (to interpolate at the orange point, nodes D and E are
needed, which in turn need A, B, and C). In contrast, the resolution tree requires only 2
lookups (nodes A and B), provided that the data filtering is interpolating, i.e., a finer-level
sample can be directly copied from coarser-level one at the same spatial location.
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ttttttttttddd:dyx:dyx:dyx:dyx:tyx:tyx:tyx:tx:yx:yx:yx:yx:yx:yx

*************:***:***:***:***:***:***:***:**:**:**:**:**:10:00

*************:00:10:***:***:***:***:***:***:***:**:**:**:**:**

*************:***:***:***:***:101:000:000:00:00:00:00:00:00:00

*************:000:000:00:00:00:00:00:00:00:101:***:***:***:***

(a) Indexing template

(b) Interleaved coordinate 1

(c) Linear index 1 (level 1, subband 2)

(d) Interleaved coordinate 2

(e) Linear index 2 (level 9, subband 5)

Figure 4.7: An example demonstrating the use of an indexing template. (a) is the indexing
template, for a four-dimensional dataset (the dimensions are denoted using the letters
x,y,d,t). (b) is an interleaved coordinate for some grid point, following this template (the
* character stands for either 0 or 1). (c) is the linear index of the grid point in (b). (d) is
another interleaved coordinate, and (e) is the linear index of the grid point in (d). The fixed
part (T) is in green, the zero suffix (S) is in orange, the subband part (F) is in black, and the
prefix part (P) is in blue.
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Figure 4.8: A global tree can be constructed by merging local trees built independently from
each brick. The merging is done by generating a tree that spans all the local roots ({0, 1, 2, 3}),
while keeping the local edges intact. In general, when using an indexing template where the
template parts are different, a resolution tree can only be created through repeated merging.
Note that even when the template parts are identical and a resolution tree can be built using
mapsMd, this tree is different from the tree obtained by repeated merging.
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level-5 brick (dimensions 2𝑡
4 × 2𝑦

5 × 2𝑥
6)

level-6 brick (dimensions 2𝑑
1 × 2𝑡

4 × 2𝑦
4 × 2𝑥

6)

level-7 brick (dimensions 2𝑑
2 × 2𝑡

3 × 2𝑦
5 × 2𝑥

5)

level-8 brick (dimensions 2𝑑
3 × 2𝑡

2 × 2𝑦
5 × 2𝑥

5)

Brick index

Intra-brick sample index

Zero

Figure 4.9: Bricks from the indexing template point of view. In this example, the indexing
template covers four dimensions: time (t), depth (d), horizontal axis (x), and vertical axis
(y). On each level l, the indexing template is partitioned into three parts: Pl (brick index), Bl
(intra-brick sample index), and Sl (zero). A level-l brick is parent to 2L

l−1 level-l− 1 bricks,
with Ll−1 being the length of the l− 1-th indexing template part from the right. Note also that
while the number of samples for each brick is fixed, a brick’s dimensions and dimensionality
are not fixed, but are determined by the substring of the indexing template spanned by Bl,
as demonstrated here.
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Figure 4.10: Creating a brick-based tree from a generalized resolution tree. To do so requires
not promoting existing nodes to the coarser level, but creeating new nodes that together
form a brick consisting of all subbands at the coarser level. This results in a tree with a more
natural shape compared to the generalized resolution tree.
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(a) K-d tree-style subband decomposition
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(b) Quadtree-style subband decomposition

Figure 4.11: Indexing templates create different subband decompositions. Here, I show
(a) K-d tree (M1) and (b) quadtree-style (M2) subband decompositions, for an 8× 8 grid.
The grid points are numbered by their linear index, and colored by their subband. The
k-d tree-style decomposition is done with the indexing template : y : x : y : x : y : x nd the
quadtree-style decomposition is done with the template : yx : yx : yx.
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Figure 4.12: Different subband decompositions. Nonstandard and standard subband
decompositions [270] are common for wavelet transforms, whereas frequency decomposition
can be created using trigonometric (e.g., DCT) and other orthogonal transforms. The
subbands are numbered by instances of the indexing template, with ∗ denoting either 0 or 1
(bit).

Figure 4.13: A demonstration of the need for flexibility in the filtering operator. (b)
the max-based approximation in green better preserves the features (blue) than (c) the
wavelet-based approximation in red. The max operator tends to grow the components
and potentially merge neighboring components, whereas wavelets tend to average away
components.



CHAPTER 5

COMPACT ENCODINGS AND LAYOUTS

FOR PROGRESSIVE QUERIES

This chapter presents a system that implements a member of the proposed family of

data layouts with concrete parameter choices and techniques to handle real-world data. As

mentioned earlier, most reduction techniques support only one way to refine data, i.e., as

a progression in either precision or resolution. Nevertheless, it is unclear whether such

individual schemes can be combined sensibly into a 1D progression navigating the 2D

precision-resolution space. In comparison, the proposed approach does not impose any

progression order on data chunks themselves, except for when valid cuts are concerned.

Rather, I advocate for a database-inspired approach at system level, such that the data

layout is designed to best serve chunks from the 3D precision-resolution-sample space in

any order demanded by the analysis task at hand.

The system works in three steps: data transformation (filtering), data encoding

(compression), and data chunking (and I/O). For data filtering, the domain is partitioned

into bricks, and each brick is transformed independently. To create multiple resolution

levels, transform coefficients in the coarsest subband are merged to form bricks on the next

coarser level, and the process repeats until the desired number of resolution level is reached.

After the whole transformation process, each brick consists of a number of subbands. Each

subband is further partitioned into blocks, and each block is compressed independently,

creating multiple data packets, one for each bit plane per block. The data packets are written

to in-memory channels, each of which correspond to a unique combination of bit plane and

subband (and resolution level). Then, each channel is dividied into chunks, which are the

system’s unit of I/O. Finally, a chunk is written to disk once it is fully encoded. Figure 5.1

depicts this whole process. I next discuss each stage in more detail.
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5.1 Decorrelation transformation
5.1.1 Per-brick wavelet transform

The hierarchy is built from the bottom up in a depth-first manner, with data transfor-

mation on each level performed in two steps. In the first step, the mapM3 is performed

within each brick for one pass in each dimension. Then, the coefficients in the coarsest

subband are copied into corresponding parent bricks of the next (coarser) level. Typically

each brick on level l is the parent to 23 bricks on level l + 1 in 3D. When a parent brick on

the coarser resolution level is fully formed, the process is repeated. The recursion stops

when the desired height for the global tree(s) is reached. Once a brick is transformed, the

resulting coefficients are encoded and then the brick is discarded from memory since they

are no longer needed. This procedure is illustrated in Figure 5.2.

It is best to move data as soon as possible (to avoid buffering too many bricks in memory),

which can be achieved by a depth-first traversal of the set of bricks on all levels. Therefore,

bricks are visisted following a Z index created by interleaving the bits of each sample’s

spatial coordinates. Each Z index consists of a suffix (of length log2 (BxByBz) bits) that

corresponds to a local coefficient index within the brick, and a prefix (the rest of the bits) to

indicate the index of the brick itself. The interleaving pattern for Z is determined by first

fixing a pattern for the suffix, and then repeating it as many time as possible for the rest

of Z. Intuitively, bricks at level l − 1 are formed by treating each level-l brick as a single

sample. This strategy ensures a 2D brick stays on the same 2D slice in the next coarser level,

for example.

For data filtering, the CDF 5/3 multilinear wavelets [47] are used, due to their simplicity

and effectiveness in compression. Furthermore, multilinear interpolants are at the foundation

of many visualization techniques [11, 41, 180, 208]. The wavelet transform is performed

in bricks of size Bx × By × Bz samples, where Bx,y,z = 2kx,y,z for kx,y,z ≥ 0. The lifting

approach [53] is used to compute the wavelet transform: f̂2i+1 = f2i+1−
1
2 ( f2i + f2i+2) (w-lift)

and f̂2i = f2i +
1
4

(
f̂2i−1 + f̂2i+1

)
(s-lift) where fi denotes the input sample value at index i and

f̂ the wavelet (odd-indexed) and scaling (even-indexed) coefficients. Higher dimensional

wavelet basis functions are formed by tensor products of the 1D basis functions. The CDF

5/3 basis functions are visualized in Figure 5.3.
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5.1.2 Linear-lifting extrapolation

Encoding bricks independently of each other is key to handling out-of-core data sets,

because the data can be processed one brick at a time during compression and reconstructed

at brick level during decompression. Because the wavelet basis functions span across

brick boundaries, discontinuity artifacts often appear in reconstructed data if transform

is naively restricted to individual bricks. To largely reduce this effect, I use lifting-based

linear extrapolation [25] to extrapolate each brick with one extra sample in each dimension.

Such an extrapolation ensures zero-valued wavelet coefficients in all dimensions at the

boundary during the forward transform, resulting in good compression. Halo exchange to

exchange the boundary values among neighboring bricks could have been used; however,

such an approach introduces synchronization points and prevents bricks to be encoded

and decoded truly independently of one another. Conceptually, the usual lifting steps are

performed everywhere in an extended domain of size (2L + 1)d, but assign values lazily to

grid points outside the original domain.

Denoted symbolically as (*–*–*), the w-lift step updates the value at the center using

the adjacent ones. With respect to the original and extended domains, there exist four

possible scenarios: (x–x–x), (x–x–o), (x–o–o), and (o–o–o), where x represents a grid

point within the original domain whereas o has an uninitialized value due to being outside

the original domain (but within the extended domain). In the first case, all three relevant

grid points exist within the original domain and the standard w-lift can be applied. In

the second case, the two known values are linearly extrapolated to assign a value to the

rightmost grid point when needed, resulting in a zero-valued wavelet coefficient. For the

third and the fourth case, the wavelet coefficient is set to zero but setting the value for the

rightmost sample is deferred to an extrapolation step on some coarser level. Furthermore,

s-lift is applied only to values that have been initialized — standard step for the first case,

but no effect for the remaining three. With this scheme, uninitialized grid points are given

values such that when they are used for lifting, the resulting wavelet coefficients are always

zero. Note that the same technique can also extrapolate bricks with dimensions less than

Bx × By × Bz (those at the domain boundary) to (Bx + 1)× (By + 1)× (Bz + 1), provided that

Bx,y,z are powers of two. Table 5.1 illustrates this approach using a concrete 1D example.

Figure 5.4 demonstrates the effectiveness of linear-lifting extrapolation method for avoiding
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boundary discontinuities.

This scheme differs from simple linear extrapolation in that it interleaves the potential

linear extrapolation steps described above with lifting steps. Simple linear extrapolation

does not ensure smoothness along dimensions orthogonal to the one being extrapolated,

while also failing to correct for the nonlinear reconstruction introduced by s-lift steps. In

contrast, by interleaving lifting steps with extrapolation steps across the hierarchy and

across spatial dimensions, my method ensures smoothness in the extended function both

across the boundary of the domain as well as across all dimensions (see Figure 5.4). Naive

linear extrapolation is also entirely local as it depends only on the last two values near

the domain boundary, whereas my method extrapolates at multiple scales and therefore is

globally influenced.

In the example from Table 5.1, the extrapolated function is longer than the original

function by three elements unlike the traditional wavelet transform, where the two functions

have the same length. However, in practice, the inverse lifting steps are never performed,

and thus the extrapolated function is never explicitly computed or stored. The potentially

extrapolated value at each lifting step needs to be stored to support perfect reconstruction,

but this requires storing at most a single extra value along each dimension of the original

domain, as the same slot can be reused on the next coarser transform level without

compromising reconstruction using inverse lifting steps. Because of this, bricks of size (2L)d

are only extended to bricks of size (2L + 1)d, regardless of the number of transform levels.

In 3D, bricks of size 643 are extended to 653, for approximately a 5% overhead.

5.2 Compression of exponents and significant bit planes
5.2.1 Block-based compression

I use a breadth-first blocking approach limited to each wavelet subband to group

coefficients into blocks of size 43 and encode each block with ZFP [169], with modifications

by me to suite the purposes of this work. ZFP is a fast, block-based compressor that

transforms and encodes every 4d block independently. The transform is based on the

Gram polynomials (also known as discrete Chebyshev polynomials [33, 214]), with a slight

change made to the basis to make the transform efficiently implementable using only

shifts and adds, causing the transform to be slightly non-orthogonal. After transformation,
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the resulting coefficients are ordered by sequency [301], ready to be coded. ZFP uses an

embedded bit plane coder, in which each bit plane is coded one at a time, starting from

the most significant one. A simple group testing algorithm is used where a bit plane is

divided into a significant prefix and a non-significant suffix. For any bit plane, the suffix is

initially that of the previous bit plane (which is the whole bit plane at the very beginning),

but gradually narrowed down by testing for significance one bit at a time, until it consists of

all 0 bits. This algorithm is very fast because there is no need for complicated book keeping,

unlike the traditional bit plane coders such as SPIHT [249] or SPECK [227].

For this work, a block is restricted to a single subband to avoid coupling the different

subbands during decoding (i.e., so that the refinement in resolution is more fine-grained).

Note that due to the extrapolation discusses earlier, near the boundary of a subband, a block

no longer has dimensions 43 but can be reduced to 42 or 41, and such “partial” blocks are

compressed by 2D and 1D ZFP, respectively. Every combination of subband and bit plane

writes to a different stream. The value bits across blocks are aligned (shifted) to the same

exponent, and equivalent bit planes across blocks are written to the same stream.

5.2.2 Transposition of bit planes

My implementation of ZFP has a few modifications to improve the decoding performance.

The default ZFP decoder essentially has two parts: (1) read one bit at a time and decide

what to do depending on whether this is a group test or value bit, and (2) "scatter" (or

transpose) the value bits back to memory. Based on my profiling, part 2 (bit transposition)

is in many cases the bottleneck, due to its involvement of data movements to and from

the CPU and not just arithmetic operations. To speed up the bit transposition, I use two

approaches: (1) utilizing AVX2 instructions to transpose more bits per instruction, and

(2) a recursive transposer which performs more transposition steps per memory access.

The AVX2 approach works with 256-bit registers, or eight 32-bit integers at the same time.

The idea is to repeatedly use 8-bit chunks of the 64-bit input as a mask to load eight 32-bit

integers from a block, perform the addition, then store the result back to memory. This

results in 2x improvement in speed for the decoder.

The recursive transposer, on the other hand, partitions a bit matrix (e.g., 64 bit planes

of 64 coefficients) into four (2× 2) equal-size blocks, and then recursively transpose these
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four blocks, with rows of submatrices being processed in parallel. Transposed bit planes are

output as soon as the corresponding submatrices have been transposed, and the recursive

process can end prematurely if the bit planes being decoded have been transposed. The top

two submatrices are transposed first, and once that is done their corresponding bit planes

can be encoded. The bottom two submatrics needs not be transposed if the corresponding

bit planes are not output.

If many (at least 8) bit planes are decoded, the recursive transposer can be 10 times faster

than the default ZFP transposer and 4x faster than the AVX2 transposer. However, the AVX2

version is faster if only few bit planes are being decoded; the reason is that the recursive

transposer makes many data movements that need to be amortized over a relatively large

number of bit planes to transpose. Therefore, in my implementation, both the AVX2 and

the recursive transposers are used. The former is used when fewer than 8 bit planes are

decoded, the latter is used otherwise.

5.2.3 Compression of floating-point exponents

Because a brick contains many blocks, I also compress the exponent data across blocks

(the official ZFP stores this information independently for every block). For each brick,

the maximum exponent of all blocks is stored, followed by the dictionary compressed

base-128-encoded block exponents expressed as differences from the max exponent. This

so-called VarInt representation allocates fewer bits for smaller differences, as is the case

here due to coherency between neighboring blocks of the same brick. Storing the maximum

exponent per brick allows the decoder to skip decoding an entire brick if the maximum

exponent is so small that the error tolerance is achieved even with no bit planes decoded.

5.3 Data organization and indexing
To facilitate the upcoming discussion, I define four common types of queries: (1) Qprec

queries that request data at coarse resolution but high precision, (2) Qres queries that request

data at low precision but high resolution, (3) Qmixed queries that request at some balanced

combination of precision and resolution, and (4) Qroi queries that request data at very high

resolution and precision, but only for a subset of the whole grid (the region of interest, or

ROI). Figure 5.5 visually compares several approximations produced by such queries.
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5.3.1 Tiles and chunks

As mentioned earlier, the whole encoded dataset is partitioned into smaller chunks that

form the units of disk or network I/O in the proposed framework. For chunking, I do not

fix the chunk size in bytes, but let each chunk span the same number of samples in space

(I settle on the value of 5123 through the experiments discussed in Section 5.5). To form

chunks, the 3D space of precision, resolution, and spatial domain is partitioned into tiles

of size TB (bit planes) ×TS (subbands) ×TG (grid points), and assign compressed bits from

the same tile to one chunk (note that this is possible in my particular compression scheme,

provided that TG is a multiple of the block size). Thus, a tile can be considered the “extent”

of a chunk in the aforementioned 3D space. A small TG can result in chunks too small for

optimal I/O. On the other hand, a large TG creates spatial couplings that can penalize small

Qroi queries; likewise, large TB and TS can negatively affect Qres and/or Qprec queries. I let

TB = TS = 1, and choose TG such that TG = 2k and TG ≥ Bx, By, Bz. For efficient I/O, I do

not write data to disk as soon as a brick is compressed, but buffer the compressed bits using

one bit stream for each combination of subband and bit plane, and flush the bits only for

each chunk. Equivalent bit planes across blocks (taking into account the block exponents)

are written to the same stream. Figure 5.6 translates the understanding of cuts onto the 2D

precision-resolution-sample space in terms of chunks of data.

5.3.2 Indexing and metadata

Note that my compression scheme is variable-rate, so true random access is not supported,

for a significant gain in compression ratio. Nevertheless, fast access to compressed brick

data is supported by storing brick IDs (interleaved brick indices) and the size of every brick

in number of bytes, encoded using base-128 compression [50]. Brick IDs are compressed

by unary coding the differences between consecutive IDs, which tend to be 1, but can also

be different than 1 since a brick can be significant on a bit plane whereas a neighboring

brick is not. Likewise, to support fast access of chunks, the (dictionary compressed) chunk

IDs, chunk sizes, and the total number of chunks (Figure 5.7, left) are stored in each file.

Given a chunk’s address, the chunk can be located by a binary search in its corresponding

file. In practice, parameters are chosen such that a file can contain at most tens of thousand

of chunks, so that such a flat indexing scheme still works well. The exponent data is also



94

stored into chunks in a way that mirrors the bit plane chunks, but in a separate set of files

(Figure 5.7, right).

I use a single indexing scheme that works across brick, chunk, file, and directory levels.

Starting from the least significant bit of a brick’s interleaved index, portions of this index

are assigned one-by-one to chunks, files, and directories (Figure 5.8). This indexing scheme

defines an implicit tree over the space of directories, files, and chunks, which enables a

depth-first lookup algorithm that computes a list of relevant directories, files, and chunks

in logarithmic time, skipping irrelevant files entirely. Similar schemes have been used

previously, e.g., in the context of sorting objects in a bounding volume hierarchy [155, 217].

5.4 Data lookup and decoding
5.4.1 Chunk and brick lookup

Given a data query that contains an ROI, a resolution level, and an error tolerance, we

need to quickly locate the relevant files, chunks, and bricks for decoding. At the API level, I

do not make use of cuts, due to the complexity of providing such an API and because a cut

can always be specified using a number of such queries. Since the topology of Tp
r is implicit

(index-based), it is easy to ensure all such queries produce valid cuts, as the only constraint

to be satisfied is that whenever a node in Tp
r is retrieved, all of its ancestors (i.e., coarser level

nodes and more significant bit planes) — identified by indexing — are also retrieved. In

practice, given such a query, the files containing the corresponding bits are located using a

two-stage lookup. First, file lookup in the precision-resolution space is handled by defining

a function that maps a point in that space to a file ID and a file path, which I define using bit

packing (for file ID) and string concatenation (for file path). Given the requested nodes, the

algorithm iterates over the relevant levels and bit planes, and applies this function each

time to obtain the directories containing the relevant files.

Once inside such a directory, spatial lookup is performed to locate the exact files,

chunks or bricks that intersect the requested ROI, relying on the indexing scheme described

in Section 5.3. Whenever a relevant file is found, the traversal is continued in the same

way to find relevant chunks in the sub-tree under the file. These chunks are then fetched

using the offsets stored in the file. Once a chunk is fetched, relevant bricks are located using

the metadata stored in the chunk. Although the whole chunk is fetched, only the relevant
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bricks in the chunk are decompressed to retrieve the requested bits. Note that depending on

the query’s requested downsampling factors, certain subbands do not need to be decoded

and can be skipped completely. If the ROI is small enough, even blocks within a brick can

be skipped; however, whereas both the fetching and decoding of a brick can be skipped, for

a block, only the decoding can be skipped (i.e., a block is read from disk but not decoded),

since the metadata does not include the size of each encoded block.

5.4.2 Brick decoding

At decoding time, the steps performed for encoding are now done in reverse. In

particular, bits are fetched from the streams, decoded, and “deposited” into a set of bricks,

which start empty. Since not all bricks are present (depending on the query’s ROI), I loosely

maintain and update the current approximation in memory using a hashtable of bricks of

wavelet coefficients, where the key consists of a brick’s interleaved index and the brick’s

resolution level (including the subband). Each brick stores a grid of wavelet coefficients at

a certain resolution level and subband. During decoding, bricks are updated with newly

decoded coefficient bits, and the field is reconstructed through per-brick inverse wavelet

transform, with missing coefficients assuming the value of 0. To keep a minimal state,

the hashtable can also be avoided, and the inverse wavelet transform can be perfomred

while having no access to previously decoded wavelet coefficients as they are presumably

deallocated. Since the transform is linear, however, I can simply dequantize the (integral)

increments obtained by decoding the current bit plane, inverse transform the floating-point

increments, and update the field with the results.

Given an (absolute) error tolerance, only enough bit planes are encoded to conservatively

ensure the reconstruction error is within the tolerance. Beside ZFP’s transform and

quantization, the wavelet transform introduces additional range expansion that influences

error and needs to be compensated for. Range expansion at different levels are estimated

using the infinity norms of the Kronecker products of 1D multiresolution wavelet synthesis

matrices. As the first 10 norms (for the finest ten levels of resolution) are all less than 64, I

conservatively encode/decode 6 additional bit planes on top of the number dictated by the

input tolerance.

During block decoding, if the tolerance is τ and the block exponent is e, the smallest
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bit plane number to decode is b− 6, with b being the largest integer such that 2b+e
≤ τ. In

practice, the actual absolute error tends to be smaller than the input tolerance due to data

smoothness, so more bit planes than needed are often decoded. Nevertheless, the required

error tolerance is always respected, up to machine epsilon with respect to the range. Finally,

wavelet coefficients are multipled with the norms of corresponding wavelet basis functions,

ensuring equal energy contributions from the same bit plane on all levels.

5.4.3 Progressive decoding

Progressive decoding is the ability to resume decoding as new data arrives without

redoing previous work. This capability is useful when a bit stream must be decoded as

it is being transferred to show gradually improving results to the user. Supporting this

feature often means keeping the state of the decoder in memory, which may not be practical

depending on the size of this state. In this case, coefficients in a block always follow the

same order and have the same precision, so the state for each block consists of the number

of significant coefficients (an integer between 0 and 64), the current bit plane (an integer

between 0 and 63), and the block exponent (11 bits for float64). Thus, the complete state

needed for ZFP to resume decoding can be stored in 24 bits per block of 64 samples in 3D.

5.5 Evaluation
I evaluate the efficacy of the proposed system using the data sets in Table 5.2, which

features various types of scientific simulations. The test computer is a laptop with a 4-core

CPU (2.8 GHz Intel Core i7-7700HQ), 32 GB of RAM and (unless otherwise specified) a 122

MB/s spinning hard drive. Note that only one CPU core is used in all tests. Throughout this

section, the term “tolerance” implies precision levels (which corresponds to the RMSE in

the ideal case); a high tolerance corresponds to a low-precision level and vice versa.

5.5.1 Lossless compression and metadata overhead

In Table 5.2, I show the encoding times and near-lossless compression ratios for all the

data sets used in this work. The encoding speed reduces linearly from 35 MB/s (for Density

at 4 GB) to 6.5 MB/s (for Pressure at 900 GB), likely due to effects of the disk cache and

overheads associated with updating bookkeeping data structures that grow linearly in the

size of the data. For memory, I note that the largest data set, Pressure (900 GB), is encoded
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using only 2.5 GB of RAM. For near-lossless encoding (where the tolerance is set to about

the machine epsilon relative to data range), varying degrees of reductions are achieved,

but all are reduced to less than the original size. For all tested data sets, the overhead of

metadata is on the order of 1/1000 relative to the compressed data. The proposed system

also supports also lossless compression of float32 fields, but we note that in practice the

last few bit planes are effectively noise and hence are expensive to compress while adding

little to no value.

5.5.2 System parameters

To find optimal values for the free parameters we execute concrete instances of the

various query types on the different data sets. I have found that grouping chunks of

different bit planes and intra-brick subbands in the same file reduces query time across the

board (compared to separating them), likely due to disk prefetching and reduced seek time.

Chunks belonging to different spatial file regions (Figure 5.8) are still appropriately stored

in separate files.

5.5.2.1 Tile size

To determine a tile size (i.e., TG, the spatial extent of a chunk) that supports fast I/O

across queries, I fix the brick size to 643 samples, vary the tile size from 23 to 163 bricks,

execute different types of queries, and record the I/O as well as decompression time; the

latter involves chunk/brick lookup, low-level decompression, inverse transforms and any

in-memory data movement/transformation. The results can be seen in Figure 5.9 (left).

Larger tiles (hence larger chunks) tend to result in significantly reduced I/O time, especially

at high-resolution levels; in my experiments the tile size of 163 bricks reports the lowest I/O

time, except for the smaller ROIs of sizes 2503 and 503. I choose the tile size of 83 bricks for

the system as this size works almost as well and is better for small-ROI queries. With this

choice, TG = 5123 since the brick size is 643. Note that since a chunk is only an I/O unit, the

chunk size (controlled by TG) as expected has almost no effects on the decompression time.

5.5.2.2 Brick size

I next vary the brick sizes from 163 to 1283 samples, while keeping the tile size constant

in number of samples (computed using the choices of 643-samples per brick and 83-bricks



98

per tile). The results are shown in Figure 5.9 (right), in which a few trends can be observed.

First, I/O time is lower with larger brick sizes, likely due to less metadata for bookkeeping of

bricks in each chunk, resulting in smaller chunks on average. Decompression time increases

for bricks that are either too small or too large. Small bricks are faster to decompress

themselves but also require reading and decoding a large amount of bookkeeping metadata.

Using very small bricks helps only the tiny 503-ROI query. Based on these observations

I choose the brick size to be 643 (i.e., Bx = By = Bz = 64), which works well across the

queries for both I/O and decompression. Subsequent experiments assume the brick size of

643 samples and the tile size of 83 bricks.

5.5.3 Decoding time

Next I measure the decoding time (I/O and decompression) in three different environ-

ments: with a 100 MB/s spinning hard drive (HDD), a 1GB/s SSD, and a 1 MB/s network

(Net) (Figure 5.10). I use four queries that read increasingly more data to evaluate I/O

and decompression speed at different size scales. For HDD and SSD, at all scales the

decompression time dominates the I/O time by an order of magnitude. The SSD only

magnifies this difference. Decompression only becomes faster than I/O when using a network.

Across data sizes, the I/O time also increases at a lower rate compared to decompression;

however; even the I/O rates still do not saturate the hardware’s capacity. Note that while

these numbers are useful to compare the current state of I/O and decompression in my

system; there are many opportunities for optimization left unexplored such as multi-core

decompression, overlapping I/O and decompression as well as better I/O request batching

and simply faster raw decoding.

5.5.4 Compression comparisons

I compare the proposed method against the state-of-the-art techniques, namely SZ [278],

TTHRESH [12], JPEG2000 [264] (using OpenJPEG [3]), ZFP, and VAPOR [162]. Compared

to SZ and TTHRESH, my method’s decompression time and memory usage are orders

of magnitude lower (Figure 5.11). My data quality is competitive against both at ≈ 300×

compression ratio and is only slighty worse than TTHRESH at very high ratios (Figure 5.12).

Note that my results are decoded from a single data layout, whereas TTHRESH and SZ have

to re-compress each time. Similarly, at comparable data sizes, JPEG2000 has slightly better



99

data quality (39.0 dB versus 43.9 dB) at the expense of 2000× higher memory usage and

15× slower decompression time. Using a series of Qmixed queries with increasingly lower

tolerances, in Figure 5.13, I show that my method achieves ZFP’s decoding speed while

enabling very high compression ratios. Furthermore, for mid- and low-quality levels (PSNR

< 50 dB), my system can decode at lower resolutions, thus achieving significantly lower

decoding time. Compared to VAPOR, my method achieves substantially better quality

at 300× compression ratio, while retrieving the data using one-fourth the memory and

one-third the time, as well as avoiding blocking artifacts at very low bit rates (Figure 5.14).

5.5.5 Reconstruction quality

Next, I study data quality for 16 approximations at the vertices of a 24-point grid in the

precision-resolution space. The PSNR at each point is plotted, and points that lie on the

same resolution are connected (Figure 5.15). The rate-distortion curves suggest that the data

quality at low-resolution levels quickly reaches a plateau (which is expected since the low

number of data points, no matter how accurate, puts a hard limit on data quality measured

in PSNR). The best rate-distortion curve can be thought of as an imaginary “envelope” that

is the upper bound of all four individual curves.

Finally, to demonstrate the scalability of the proposed system, I compress a 900 GB

turbulent channel flow field [159] (10240× 7680× 1536, float64) and decode three approx-

imations (Figure 1.4) of progressively increasing quality decoded along a curve in the

precision-resolution space. The figure reports the decode time and memory usage. The

results show that my system can achieve a 120,000× compression (900 GB to 7 MB) with

minimal quality loss in volume rendering. The 7 MB approximation is also decoded in 1.1

seconds using only 13 MB of RAM.
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Figure 5.1: Overview of the proposed system. Bricks are transformed independently,
creating multiple subbands. Subbands are compressed independently in blocks, creating
multiple packets, one for each bit plane of the block. Packets are written into channels, each
corresponds to a (bit plane, subband) combination. Each channel is split into contiguous
chunks, and the chunks are written to disk.
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Figure 5.2: At each level, the samples in each brick are transformed to form local trees, and
then every 2d root nodes (in yellow) of such trees are copied into a parent brick, before the
process is repeated for the next coarser resolution level.
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Figure 5.3: The CDF 5/3 linear B-spline wavelet basis functions in 1D and 2D.
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(a) Zero padding
(7997, 9918, 4664)

(b) Linear extrap.
(6263, 34742, 19007)

(c) Linear-lifting
(6263, 6342, 2965)

Figure 5.4: Function extensions (top) and the corresponding meshes (bottom) for a
shockwave defined on [256× 1024] domain and extrapolated to [1025× 1025] using different
methods. The associated metrics are number of (cells, leaf nodes, internal nodes). Zero
padding introduces artificial discontinuities at the boundary of the input domain (notice
the vertical blue streak of finest-level cells). Linear extrapolation maintains smoothness
near the boundary, but can create discontinuities farther out from the original domain. My
linear-lifting approach avoids artificially large wavelet coefficients at the boundary and in
the extrapolated region.



103

(a) 3842
× 256, ϵ = 0, 288 MB (b) 1922

× 128, ϵ = 1/4, 195 KB (c) 1922
× 128, ϵ = 1/32, 357

KB

(d) 1922
× 128, ϵ = 1/128, 563

KB
(e) 962

× 64, ϵ = 1/128, 199 KB (f) 3842
× 256, ϵ = 1/16, 1024

KB

Figure 5.5: Isocontours extracted at different resolution (R) and precision levels (expressed
as ϵ for absolute error) using the proposed system. It is interesting to see that better surface
quality can be obtained with less data at a lower resolution but higher precision level ((d) vs.
(f)). The opposite can also be seen, where higher resolution but lower precision (c) results
in better surface quality (than (e)). This example demonstrates both the versatility of my
system (all approximations are obtained from the same data layout on disk), and the need
for fine control in precision and resolution.
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here has three levels, seven subbands, and three bit planes. Each combination of subband
and bit plane contains a number of chunks, shown as squares and colored by subband (light
brown squares are extrapolated chunks). Each node of the tree represents an entire subband
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Figure 5.7: File and chunk organization for compressed bit plane data (left), and for exponent
data (right). Top is how chunks are stored in a file, and bottom is how a chunk is organized
internally.
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Figure 5.8: Portions of the interleaved brick index are assigned to chunks, files, and
directories. In this toy example, spatially, every 27 bricks form a chunk, every 22 chunks
form a file, every 22 files form one directory, etc.
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Figure 5.9: I/O and decompression times for different tile sizes (left) and brick sizes (right)
across a wide range of query types. The resolution and precision are controlled by the R
and ϵ (absolute error) parameters, whereas ROI controls the size of the region of interest
(which, when omitted, means the same as R). Tile size of 83 bricks and brick size of 643

samples appear to be sweet spots that work well across queries.
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Figure 5.10: I/O and decompression time on a 100 MB/s spinning hard drive (HDD), a 1
GB/s SSD, and a 1 MB/s network (Net), across four scales of decompression rates (the full
data is 9 GB). The vertical axis is in logarithmic scale. The decompression times for SSD and
Net are not repeated to avoid cluttering.

Figure 5.11: Memory usage and decoding time for the three decompressors (SZ, TTHRESH
and ours), both in logarithmic scale.
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(a) Reference – 2 GB (b) SZ 6.5 MB, 0.976 SSIM (c) Ours 6.4 MB, 0.965 SSIM

(d) TTHRESH 6.4 MB, 0.982
SSIM

(e) Ours 800KB, 0.910 SSIM (f) TTHRESH 857 KB, 0.968 SSIM

Figure 5.12: Comparison of data quality between (b) SZ, (c) ours and (d) TTHRESH at 300×
compression ratio. (e, f) Same comparison but at 2600× ratio, (SZ did not produce a result
here). (g) Plots of decode time and memory usage for the three methods. My method uses
orders of magnitudes less time and memory for decoding compared to SZ and TTHRESH.
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Figure 5.13: Comparison between my method and ZFP. My method (left, 2MB) supports very
high compression ratios > 1000×where ZFP (middle, 12 MB) struggles, while maintaining
the same decoding performance (bottom plot).
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Figure 5.14: Comparison of data quality between the proposed system (bottom left, 109 MB,
SSIM 0.78) and VAPOR (bottom right, 96 MB, SSIM 0.69). Ours (middle, 10 MB) is free from
blocking artifacts visible with VAPOR (right, 13 MB).
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Figure 5.15: Rate-distortion curves going through fixed-resolution points in precision-
resolution space.
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Table 5.1: The proposed linear-lifting approach extrapolates a 6-point function using two
levels of transform with integer arithmetic. A (forward) lifting phase begins with linear
extrapolation (pink), followed by w-lift (brown) and s-lift (blue). Inverse lifting extends the
input function to 9 points, but only 7 coefficients are stored for full reconstruction. Note
that the extrapolated function is different from one obtained via simple linear extrapolation
in the last two elements.

Input function 56 8 48 44 32 8

Level 1: Extrapolate 56 8 48 44 32 8 -16
Level 1: Forward w-lift 56 -44 48 4 32 0 -16
Level 1: Forward s-lift 45 -44 38 4 33 0 -16

Level 2: Extrapolate 45 38 33 -16 -65
Level 2: Forward w-lift 45 -1 33 0 -65
Level 2: Forward s-lift 45 -1 33 0 -65

Coefficients stored in memory 45 -44 -1 4 33 -16 -65

Level 2: Insert w-coefficients 45 -1 33 0 -65
Level 2: Inverse s-lift 45 -1 33 0 -65
Level 2: Inverse w-lift 45 38 33 -16 -65

Level 1: Insert w-coefficients 45 -44 38 4 33 0 -16 0 -65
Level 1: Inverse s-lift 56 -44 48 4 32 0 -16 0 -65
Level 1: Inverse w-lift 56 8 48 44 32 8 -16 -41 -65

Extrapolated function 56 8 48 44 32 8 -16 -41 -65

Table 5.2: Tabulation of the data sets used for evaluation, with compression ratios and
compression speeds when absolute tolerances are 5× 10−8 for float32 and 10−16 for float64.

Data set Resolution× Precision Range Compression Compression
(X × Y × Z)× Bits [min, max] Ratio Speed (MB/s) Metadata overhead

Pressure [159] (10240× 7680× 1536)× 64 [−0.23, 1.26 ] 1.36× 6.5 0.06
Dissipation [110] (4096× 4096× 4096)× 32 [ 0.00, 82.67 ] 1.41× 11.2 0.08
Dark matter [10] (2048× 2048× 2048)× 32 [ 0.00, 486.31 ] 1.16× 14.2 0.07
Temperature [319] (2025× 1600× 400)× 64 [ 4.4819.24 ] 1.95× 19.3 0.09
Mixed fraction [24] (920× 1400× 720)× 32 [ 0.00, 1.00 ] 11.36× 26.0 0.16
Density [48] (1024× 1024× 1024)× 64 [ 1.00, 3.00 ] 2.11× 35.9 0.09



CHAPTER 6

OPTIMAL PROGRESSIVE STREAMS

FOR DATA ANALYSES

With the data encoding and organization system in place, I present a progressive data

streaming framework that takes advantage of such a system to progressively improve

data quality in either resolution or precision. Within this framework, I propose a greedy

approach to compute “optimal streams” that give estimations for lower bounds of error

for various analysis tasks. I also model traditional data reduction schemes as progressive

streams in the proposed framework, therefore making it possible to fairly compare these

schemes with the proposed data streams to study the gains and trade-offs that result from

combining reducing data precision and reducing data resolution.

6.1 Packet streaming framework
In order to systematically study the resolution-versus-precision trade-offs among different

data reduction schemes, it is important to perform fair and consistent comparisons. In

this section, I develop such a consistent methodology by proposing to model different

data reduction schemes as streams of uniformly sized data packets, where the original data

contains all the packets, and any reduction step removes a set of packets (comparable

amounts of data). These data streams are transmitted using a client-server model. At any

point, the client is assumed to have received a subset of packets (in some predetermined

sequential order or in some order requested by the client), which can be used to reconstruct

an approximation to the original data. Therefore, to compare different streams, the original

data is reconstructed using the same number of packets from each stream and perform desired

tasks on each of the (approximate) reconstructions. A stream is considered better suited for

a given task if it produces results that are closer to the reference results computed from the

original data. Figure 6.1 gives a schematic view of the proposed data streaming model.
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Although both the server and the client in my model can be on the same physical

machine, only the server has full knowledge of the data. Thus, when the client receives

a packet, it might not know where that packet should be deposited. A common solution

is to have both the client and the server agree beforehand on a static ordering of packets,

independent of the data. I use the term data-independent streams to refer to streams using

such solutions. In contrast, for data-dependent streams, an additional mechanism is needed to

inform the client about the subbands and bit planes of incoming packets. In this work, I

consider both types of streams, as well as specialized task-dependent streams optimized for

given tasks (see Table 6.1). The list of datasets studied here can be found in Table 6.2.

6.1.1 Decomposition of data into packets

Although one way to compare different data reduction strategies is to restrict the

techniques to the same data size and compare data quality, it is difficult to enforce

consistency. For example, the amount of change (in data) in one step of multiresolution

simplification may be different from removing one bit in the quantization of every sample.

To make all data reduction schemes comparable, in each scheme, a data set is redefined as a

stream of equally sized packets. These packets are the smallest units of data transfer in this

framework. A packet consists of a relatively small number
(
≈ 23

)
of bits and is associated

with a resolution level and a precision level (i.e., bit plane). In this framework, different

data-reduction schemes become different orderings of packets, called streams. Restricting

two (or more) data streams to the same number of packets allows us to perform fair and

consistent comparisons.

• Resolution levels. Although there exist several ways to define the notion of

resolution/scale/frequency, I choose the multilevel basis functions of the wavelet

transform because they have compact support, and they avoid interpolation problems

associated with other representations. Wavelet transform enables spatial adaptivity

(i.e., finer resolution in regions that contain sharp features, at the expense of coarser

resolution elsewhere). In particular, I choose the CDF5/3 multilinear wavelets [47] for

their balance between simplicity and effectiveness at decorrelating the input signal in

practice [264].

A multidimensional wavelet transform can be performed in multiple passes, which
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partitions the original domain into subbands, each of which can be thought of as a

resolution level associated with one or more spatial direction. One transform pass (in

3D) creates eight subbands, of which the first is a low-pass, downsampled version of

the original data, and the remaining add fine details in each subset of the dimensions

(see Figure 6.1 for a visualization of subbands in 2D). A subsequent transform pass

recurses only on the first subband (of the previous level), creating the next (resolution)

level of subbands. Let us use l (0 ≤ l < L) to index the subbands, with l = 0 referring

to the coarsest subband and L denoting the number of subbands. In 3D, the eight

subbands created after one transform pass are indexed in the following order, from

coarse to fine: LLL, LLH, LHL, LHH, HLL, HLH, HHL, HHH (L stands for “low”

and H stands for “high”, referring to the low- and high-pass filter pair that perform

the wavelet transform). The LHL subband, for example, contains coefficients that

are low-pass transformed along X and Z, and high-pass transformed along Y. In my

experiments, the number of subbands, L, is fixed at 1 + 3 ∗ 7 = 22, corresponding to

three transform passes in 3D.

• Precision levels. For creating packets corresponding to different precision levels,

floating-point wavelet coefficients are quantized to B-bit signed integers. For most of

the experiments in this work, B = 16. This quantization eliminates the floating-point

exponent bits, such that every bit (except the sign bit) can be associated with a bit plane

b (0 ≤ b < B). I use the convention that the higher indexed bit planes are less significant.

I convert quantized coefficients to the negabinary representation, where integers are

represented in base −2, i.e.,
∑B

b=0 cb(−2)b with cb ∈ {0, 1}. Negabinary encoding is

preferred over two’s complement encoding, because data reconstruction starts by

zero-initializing all bits, and negabinary encoding has no single dedicated sign bit

and ensures that small coefficients have many leading zero-bits. This transformation

increases the number of bit planes by one, i.e., 0 ≤ b ≤ B.

• Blocks and packets. Precisely, a packet consists of bits from the same bit plane, from

a block of negabinary wavelet coefficients. A block is a [g × g × g] grid of adjacent

coefficients from the same subband. I let g be a constant (g = 2 here), so that finer

resolution subbands contain more packets, which presents a trade-off between packets
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that provide wider (but coarser) coverage and packets that provide finer (but more

local) details. Every packet (of size one byte in this work) comes from a bit plane b and

a subband l. g is chosen to be larger than one for performance reasons, as in practice,

most systems read bits in batches.

6.2 Data-dependent and data-independent streams
I define two streams: by level and by bit plane, which model two common reduction

schemes in the literature. The by level stream, Slvl, orders the packets strictly from coarser to

finer subbands. Within the same subband, packets follow the row-major order of blocks

and then bit plane order (from 0 to B) within each coefficient. All bits for each coefficient

are streamed together. The other common ordering, by bit plane, or Sbit, proceeds strictly

from higher ordered to lower ordered bit planes. Within the same bit plane, packets follow

the subband order (from 0 to L− 1) and then row-major order in each subband. Slvl and

Sbit are designed to mimic the way data is accessed in traditional methods that work either

in resolution (Slvl) or in precision (Sbit).

Additionally, I define a third stream that combines these two dimensions and refer to

it as by wavelet norm, or Swav. This stream orders packets in descending order of weights

wwav(p) = 2B−b(p)
× ∥ψl(p)∥, where p denotes a packet and ψl(p) represents wavelet basis

on subband l(p). The || notation refers to the L2 norm of the wavelet basis function. The

first term captures the contribution of a bit on bit plane b(p), and the second term captures

the contribution of a wavelet coefficient on subband l(p). In the wavelet representation, a

function f is written as a linear sum of wavelet basis functions, i.e., f =
∑

ciψi, where ci are

the coefficients. Since the wavelet transforms are based on lifting, this norm is usually not

one, but it increases with level. Basis functions in the same subband share the same norm,

hence wwav(p) is simply the contribution (in L2 norm) of a bit on bit plane b(p) and subband

l(p), to the whole function f . This ordering based on norms of wavelet basis functions

was proposed previously by Weiss et al. [305]. For details of computing the norms of basis

functions, see Appendix A.

Another common way to reduce data in the wavelet domain is to leave out the coefficients

of the smallest magnitudes. Note that coefficient magnitudes are only weakly related to

error, as the error also depends on the wavelet basis function norm [305]. This scheme
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is modeled with a stream called by magnitude, or Smag. Here, the weight function is

wmag(p) =
∑

c∈block(p) ∥c∥ (the sum is over all coefficients in the block that contains packet p).

If two packets have the same weight, they are ordered by subband index and then by bit

plane.

Unlike Slvl, Sbit, and Swav, the Smag stream is data dependent because the coefficient

magnitudes are not known without the data. In principle, data-dependent streams are

better than data-independent streams because they can prioritize important packets based

on the actual data. However, data-dependent streams are ill-suited for practical purposes,

because the cost of sending position information likely outweighs any potential benefit.

Nevertheless, I study them for various reasons. First, the by magnitude scheme is well known

in the literature [162]. Second, the “best” data-dependent streams (which do not include

position information for packets) can serve as a baseline to evaluate the performance of

their data-independent counterparts. Finally, in addition to being data dependent, streams

can also be task dependent (Subsection 6.2.1), which may provide insights into how data

should be queried to perform certain analysis tasks.

6.2.1 Task-optimized streams

Each analysis task may require a fundamentally different stream for optimal results.

Studying such “optimal” streams is important because they not only serve as a baseline

but also can provide insights into other, more practical streams. Given the original data set

f and its reconstructed approximation f ′ using a subset of packets, let q represent some

quantity of interest, e.g., histogram, isosurface, etc., computed on f or f ′. For a given q, a

well-defined error metric e(q( f ′), q( f )), which returns a single scalar, is needed. Given f ,

q, and e, my goal is to generate an optimal (and data-dependent) stream, Sopt, for q with

respect to e. One possible definition for Sopt is a stream such that the area under the plotted

curve of e, with respect to the number of bits, is minimized for all packets to be streamed.

However, this definition is limited in practice because a stream should be able to terminate

at any point and still produce as small an error as possible.

Instead, I employ a greedy approach to define the optimal stream. I notice through

experiments, however, that a straightforward greedy algorithm can pick unimportant

packets too early. For example, starting with an all-zero reconstruction f ′ = 0 and an empty
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stream, new packets can be repeatedly appended to the stream, which when included in

the current f ′, would minimize e at every step. At some point, the algorithm might pick

a packet that introduces the lowest error yet contributes very little to improve the quality

of f ′ (because more important packets would increase the error), leading to a nonoptimal

stream. To avoid this problem, I make a modification to this greedy algorithm and build the

stream backwards. Starting with a “lossless” f ′ (i.e., f ′ = f ), and at each step the packet

that has the least impact on the error e is removed from f ′. This modification largely avoids

the previous problem where less important packets were added to Sopt too early, because

by starting with the full (instead of empty) set of packets, the error measurement better

captures the importance of packets.

Unfortunately, such a greedy algorithm is still expensive in practice, as its complexity is

at least O(n2) (n is the number of packets), due to the 2-level nested loop. For a nx× ny× nz

volume, a block size of bx× by× bz, and B + 1 bit planes, n is nx
bx ×

ny
by ×

nz
bz × (B + 1). Thus,

even a small volume, e.g., nx, ny, nz = 64 and bx, by, bz = 2, can result in a prohibitively high

run time, as n2 = (32768× 17)2. Therefore, I adopt a simplified version of this algorithm,

where only one pass through n packets is needed. In iteration i (0 ≤ i < n), a new packet pi

is set to zero, then the incurred error wi using the error metric e is computed and recorded,

and then enabled pi again at the end of iteration i. After n iterations, each packet has an

associated weight wi. The stream Sopt is simply the sorted list of packets in decreasing order

of the weights. This simplified algorithm (6.1) has significantly lower running time, while

(by observation) retaining the same quality for Sopt.

Algorithm 6.1 Computing a task-optimized stream

1: Inputs:

An original function f
An unordered set of n packets P = {pi}, produced from f
A quantity of interest q, and an error function e

2: Initialize:

A set of n weights {wi}

3: for each packet pi do

4: pi := 0

5: P→wavelet coefficients C = {c j}

6: (inverse quantization and inverse negabinary transform)
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7: {c j} → f ′ (inverse wavelet transform)

8: wi := e(q( f ′), q( f ))

9: Restore pi

10: Sort the pi’s in descending order of wi.

11: Output:

The q-optimized stream, which is the sorted P

For a more optimized implementation, the inverse wavelet transform on line 7 can be

replaced by “splatting” coefficient pi onto the domain, due to the transform being linear

and the fact that pi is the only coefficient changed in the current iteration. Since tt is almost

never advantageous to stream bits belonging to one coefficient out-of-order, I also enforce

that in the final stream, packets belonging to the same group follow the bit plane order

(from 0 to B).

6.2.2 Stream signatures

Unlike data-independent streams, data-dependent streams do not impose a static

ordering of packets. To concisely represent and characterize the dynamic ordering of

data-dependent streams, I introduce the notion of a stream signature. Any stream can

be represented with respect to the two-dimensional space of resolution (subbands) and

precision (bit planes), i.e., LL,B = {(l, b) | 0 ≤ l < L, 0 ≤ b ≤ B}. Given a stream, its signature

A is defined as an L× (1 + B) matrix, where each (l, b) element is associated with Pl,b, the set

of packets belonging to subband l and bit plane b. In particular, A(l, b), i.e., the (l, b) element

of A, is an integer in the range [0, (1 + B) × L), and indicates, on average, the position at

which packets in Pl,b appear in the given stream. For example, the signature A =
[

0 1 4
2 3 5

]
indicates that the stream begins with packets that lie on the first bit plane of the first subband,

as A(0, 0) = 0. Those are followed by packets on the second bit plane of the first subband

(A(0, 1) = 1), and then the first bit plane of the second subband (A(1, 0) = 2), and finally, the

third bit plane of the second subband (A(1, 2) = 5). Thus, a stream’s signature shows how

the stream traverses the space LL,B and highlights the different resolution-versus-precision

trade-offs among streams, especially among Sopt streams optimized for different tasks.

In Figure 6.2 I visualize the signatures of Sbit, Slvl, and Swav, defined in Subsection 6.1.1.

To compute a stream signature, I partition the whole domain (not individual subbands)
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into several regions, compute one signature per region, and average these local signatures.

Partitioning is used since it is only when packets are relatively well localized that their

relative ordering in the LL,B space becomes meaningful. For example, a packet at one corner

of the domain may be streamed before one at an opposite corner, but this fact contains no

useful information. I define a region to be the spatial volume that is covered by a packet in

the coarsest subband. Algorithm 6.2 lists the steps of my approach.

Algorithm 6.2 Computing a stream signature

1: Inputs:

A stream P = {pi}

2: Initialize:

Per-region signature matrix Ar := 0
Global signature matrix A := 0

3: for each packet pi in P do

4: Let r, b, l be the region, bit plane, and subband that pi belongs

5: Ar(l, b) := Ar(l, b) + i

6: for each region r do

7: Sort the elements of Ar

8: Assign each element of Ar its index after sorting

9: A := A + Ar

10: Sort the elements of A

11: Assign each element of A its index after sorting

12: Output:

The signature matrix A

Finally, a signature can be used to construct a stream denoted generically as Ssig. This

construction is done by iterating through each element A(l, b) in ascending order and

adding to the end of Ssig all the packets in Pl,b. An Ssig captures the behavior (in the

LL,B space) of the stream it derives from, but it is stripped from any spatial adaptivity.

Hence, when Ssig is derived from an Sopt, it can serve as a bridge when comparing

the resolution-versus-precision trade-offs between data-independent and data-dependent

streams.
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6.3 Evaluation on different analysis tasks
Thus far, I have presented several types of streams: data-independent (Slvl, Sbit, Swav),

data-dependent and task-independent (Smag), and task-dependent (Sopt, Ssig). In this

section, I consider a variety of common analysis and visualization tasks to evaluate the

performance of these streams. For each task, I define an error metric, e, for the evaluation

and comparison of streams. Using 6.1, I compute streams specifically optimized for each

task, S[task]-opt, and use its signature to compute the corresponding S[task]-sig. For a variety

of data sets, I compare these streams by evaluating the error as a function of bits per samples

(or bps), defined as the total number of bits received divided by the total number of samples.

To mimic the effects of entropy compression commonly used in practice, I remove from

each stream all packets that consist only of leading-zero bits. The wavelet basis allows us to

always reconstruct data at full resolution, which greatly simplifies computation of errors, as

there exists no standard method to compute error between grids of different dimensions.

6.3.1 Function reconstruction

One of the most fundamental analysis tasks is that of reconstructing the original

function itself. A commonly used error metric in this case is the root-mean-square error

(RMSE). Figure 6.3 shows a comparison of the different streams for a variety of data

sets. It can be noted that, in general, Srmse-opt (the stream optimized to minimize the

RMSE) performs better than Srmse-sig due to spatial adaptivity, whereas Srmse-sig slightly

outperforms Swav, followed by Sbit, Smag, and Slvl. In particular, Sbit outperforms Slvl

(for kingsnake and boiler, it does so after approximately 1 bps), which can be attributed

to the removal of leading-zero packets. Empirically, wavelet coefficients on finer scale

subbands are much smaller in magnitude [249]. Such coefficients contain a majority of

the leading-zero bits, whose removal benefits Sbit the most. diffusivity and plasma contain

a significant amount of empty space, which translates to more leading-zero bits after the

wavelet transform that Sbit can take advantage of, and thus, it outperforms Slvl immediately

from the beginning.

Smag underperforms for the same reason that Slvl does, but to a lesser extent, since Smag

is adapted to the data. Swav outperforms both Slvl and Sbit, because it follows the optimal

(data-independent) bit ordering in LL,B in the L2 norm, which is also the norm that the
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RMSE is based upon. Unsurprisingly, Srmse-opt outperforms all the others, as it is the most

data-adaptive (i.e., it can optimize packet ordering in the spatial domain in addition to the

LL,B domain). Srmse-sig is the second best stream, as it follows the bit ordering of Srmse-opt in

LL,B but lacks any spatial adaptivity. In general, Swav and Ssig have similar performances,

but Ssig performs better when the data is less smooth or noisy, as is the case for boiler and

kingsnake. For such data, fine-level packets tend to have very few leading one bits among

a majority of leading zero bits, which Swav does not take into account (data-independent

streams in effect assume every packet contains all one bits).

Let us explore the errors visually by rendering the plasma volume at 0.2 bps, for all

streams except Srmse-opt (Figure 6.4). Although Slvl has the precision to obtain an accurate

background, it lacks resolution to resolve the fine details. Sbit, instead, lacks the precision to

reconstruct the (mostly smooth) background, but it has enough resolution to capture the fine

details well. Swav balances both precision and resolution, producing a more accurate picture

as a whole. In this case, the Ssig stream produces the most accurate rendering overall.

6.3.2 Derivative computation

Computation of derivative-based quantities is important in data analysis. Examples

include vorticity (curl) computation from velocity fields to identify vortical structures,

gradient computation for accurate Morse segmentation and shading, and ridge extraction

(e.g., for Lagrangian coherent structures). In this work, derivatives are always computed

using finite differences, which is common in practice. In this section, I use 32 bits for

quantization to ensure enough precision for finite differences. Finite differences are always

computed on the finest resolution grid to avoid computing distances between quantities

defined on grids of different resolutions.

6.3.3 Gradient computation

Given a function f defined on a grid, its gradient at a grid point xxx = (x, y, z) is ∇ f (xxx) =(
∂ f
∂x , ∂ f

∂y , ∂ f
∂z

)
. For accuracy, I use a five-point stencil to compute the gradient, i.e., ∂ f

∂x ≈

1
12 f (x− 2, y, z) − 2

3 f (x− 1, y, z) + 2
3 f (x + 1, y, z) − 1

12 f (x + 2, y, z), but note that the relative

performances of the streams stay the same, using the more common two- and three-point

formulas. The error between a gradient field ∇ f , and its low-bit-rate approximation

∇ f ′, is defined as e(∇ f ′,∇ f ) =

√
1
N

∑N
i=1

∥∥∥∇ f ′(xxxi) −∇ f (xxxi)
∥∥∥2

. Using 6.1, I compute a
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gradient-optimized stream, Sgrad-opt, that minimizes the difference between the reconstructed

and the original gradient fields.

Figure 6.5 shows the gradient error incurred by different streams for four data sets. In

general, I observe the ordering of performance (from best to worst) as: Sgrad-opt, Sgrad-sig,

Sbit, Swav, Smag, Slvl. This ordering can also be seen in Figure 6.7, where the x-component

of the gradient field for tuburlence is rendered at 0.3 bps. Unlike in the RMSE case, Sbit

performs nearly the same as Swav. To investigate this difference, I extract a 1D line from

the plasma data set and reconstruct the function using Sbit and Swav at 0.6 bps (Figure 6.6).

Swav’s reconstruction is more accurate on average compared to Sbit, which captures well

the function’s shape (due to the presence of fine-scale bits), but not the function values (due

to the lack of precision in the coarse-scale coefficients). Functions reconstructed with Sbit

tend to be “shifted” in the range domain, as seen in Figure 6.6. However, the gradient

operator has the tendency to cancel the shifting effect, bringing the performance of Sbit

closer to that of Swav.

Sgrad-opt again outperforms the rest of the streams. Slvl and Smag perform poorly for

gradient computation, lacking the resolution to capture sharp features. Sgrad-sig mostly

closely follows Sbit in performance but outperforms it for boiler. Again, compared to the

other fields, boiler is less smooth, resulting in less spatial coherency in the magnitudes of

the fine-scale coefficients, which Sgrad-opt and Sgrad-sig can take advantage of, whereas Swav

or Sbit do not take into account actual bit values. Overall, the results suggest that besides

minimizing RMSE, Swav also works well for gradient computation, although for the latter

task, Sbit is also good alternative.

6.3.4 Laplacian computation

The Laplace operator is a second-order differential operator defined as the divergence

of the gradient field. The Laplacian of a 3D field is defined as ∆ f = ∂2

∂x2 f + ∂2

∂y2 f + ∂2

∂z2 f .

Using a five-point finite difference, we can approximate ∂2 f
∂x2 ≈ −

1
12 f (x − 2, y, z) + 4

3 f (x −

1, y, z) − 5
2 f (x, y, z) + 4

3 f (x + 1, y, z) − 1
12 f (x + 2, y, z). I use the root-mean-square error to

compare two Laplacian fields, i.e., e(∆ f ′, ∆ f ) = RMSE(∆ f ′, ∆ f ). I use 6.1 to compute

a Laplacian-optimized stream, Slap-opt, which minimizes e, and an Slap-sig stream from its

signature. Figure 6.8 plots the errors for all relevant streams. The plots here largely follow
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the ones in Figure 6.5, in terms of relative performance among the streams, but with more

discernible gaps between Sbit and Slap-sig, as well as between Slap-sig and Sbit. The results

suggest that similar to the gradient case, computation of the Laplacian favors resolution

over precision, but to a higher degree.

6.3.5 Histogram computation

A histogram succinctly summarizes the distribution of sample values, and thus it is

useful as a cursory “look” into the data and in guiding further analysis. For example, it can

be used to guide the selection of colors and opacities in a transfer function. To decide on

an error metric to compare histograms, I experimented with several popular metrics such

as Kolmogorov-Smirnov [266], Kullback-Leibler [144], and Earth Mover’s Distance [247],

among others [26, 111]. I chose histogram intersection [276] as the metric of choice, because

it is fast to compute and is reasonably insensitive to changes in precision, as well as the

number of bins. The intersection distance between two histograms H1 and H2 is defined

as e(H1, H2) = 1 −
∑

i min (H1(i), H2(i)) (the sum is over all bins i). Every histogram is

normalized by dividing the value in each bin by the total number of samples. It is decided

that the error metric should take into account both the histogram shapes and the range of

values, and I clamped the range of values in reconstructed functions to that of the original

function, so that corresponding histogram bins, i.e., H1(i) and H2(i), share the same range.

As before, for each data set, I use 6.1 to compute an Shist-opt stream, optimized for

histogram error, and then construct an Shist-sig from its signature. I plot the error curves

for all relevant streams using the intersection error metric (compare Figure 6.9). I use

64 for the number of bins but note that there exist no meaningful differences across a

wide range of number of bins (from 64 to 512) in my experiments. In all cases, the group

consisting of Sbit, Slvl, and Smag underperforms the other group by a large margin. Smag

performs poorly, because it ignores regions of smooth variations, which nevertheless count

toward the distribution. Slvl generally outperforms Sbit at low bit rates, although there

are several crossover points between the two curves. As can be seen in Figure 6.10, Slvl

outperforms Sbit when leading zero packets are present, because increasing resolution does

not help as much as increasing precision. This is because the histogram is oblivious to

spatial locations of samples (which require resolution to resolve) but is sensitive to sample
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values (which require precision). However, when leading zero packets are removed, Sbit

benefits significantly more than Slvl does (for the same reason explained in Subsection 6.3.1),

resulting in the observed crossovers.

In the latter group, the performances of Swav and Shist-sig (and even Shist-opt) differ by

a negligible amount. This observation is confirmed in Figure 6.11, where I plot various

histograms, reconstructed at 0.3 bps, for the boiler data set. The histograms produced by

Swav and Shist-sig have approximately the same shape and are the closest to the reference

histogram. The next best histogram is produced by Slvl, followed by the one produced by

Sbit, and finally Smag. These results suggest that histogram computation benefits from a bit

ordering that combines both resolution and precision, with a strong bias toward precision.

6.3.6 Isosurface extraction

Studying isosurfaces of a given function is an essential task in many visualization

and analysis pipelines, as they can highlight features of interest. For measuring error

between isosurfaces, I have found that the commonly used Hausdorff distance does not

work well in this case, because two very different reconstructed surfaces may share the same

Hausdorff distance to the reference. More sophisticated metrics exist, focusing on different

characteristics such as geometric [74] and topological [73] properties, but they assume the

surface has certain properties. Since isosurfaces partition the domain into “inside” and

“outside” regions, I opt for a simpler error metric that assumes nothing about the shape of

the isosurfaces, but simply counts misclassified voxels. This metric differs from comparing

histograms with two bins in that we care about the spatial position and not just voxel counts.

However, if the error caused by discarding a packet is of subvoxel resolution, such

a metric fails to capture the importance of that packet, causing Siso-opt to be ineffective.

Therefore, I add the relative difference in surface areas (|A1 −A2|/|A1|) to the error term.

This additional term is often between [0, 1] and is meant to capture the subvoxel error when

the number of misclassified voxels is zero.

With the error metric defined, we can now compute a data-dependent stream optimized

for this metric (Siso-opt) and a stream based on its signature (Siso-sig) using 6.1 and 6.2.

Figure 6.12 compares the performances of these two streams, along with Sbit, Slvl, Swav,

and Smag. As can be observed, Slvl performs poorly, indicating that isosurface extraction,
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requires higher levels of resolution compared to histogram computation, as we need to

resolve a surface in the spatial domain and not just the range domain of the function.

Swav and Siso-sig typically outperform Sbit, especially at low bit rates. Figure 6.13 renders

the isosurfaces reconstructed at 0.6 bps for all streams. In terms of the quality of the

reconstructed surfaces, Siso-sig ≈ Swav > Sbit > Smag > Slvl, which agrees with the plots

in Figure 6.12. For isosurface extraction, Swav appears to be the only stream — among the

data-independent ones — that consistently works well in all cases.

Comparing streams across tasks, it can be observed that histogram-based streams prefer

more precision, while derivative-based streams prefer resolution. This is demonstrated

in Figure 6.14. The same figure also shows that the primary difference between an optimized

stream and a signature stream for the same task is that the optimized stream is able to

spatially adapt, which can often result in significantly better bit allocation, and thus better

data quality at the same bit rate, compared to the signature stream.

Figure 6.1: My proposed data streaming model. The input is a regular grid of floating-point
samples; the output is a stream of packets. A packet consists of bits from the same bit plane,
from a block of negabinary wavelet coefficients. Different data reduction schemes generate
different streams. The wavelet subbands are separated by blue lines in the second image,
with the coarsest subband at the top left corner. Quantization and negabinary conversion
happen immediately after wavelet transform.
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(a) by level (Slvl) (b) by bit plane (Sbit) (c) by wavelet norm (Swav)

Figure 6.2: Visualization of signatures for Slvl, Sbit, and Swav in 2D. Each signature is a
10 × 17 image, corresponding to 10 subbands (in 2D) and 17 bit planes. Each (l, b) “cell”
contains a unique value from 0 to 169, indicating its “priority” in the stream, and is mapped
to a white–blue color scale. Slvl streams bits by resolution (from top to bottom), Sbit streams
by precision (from left to right), while Swav mixes precision and resolution.
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(a) boiler [2.351e−9, 0.138]
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(c) plasma [0.024, 14.67]
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(d) kingsnake [63, 185]

Figure 6.3: Root-mean-square error (RMSE) of reconstructed functions for different streams
and data sets; lower RMSE is better. The streams are truncated at both ends to highlight
the differences, without omitting important information. The numbers in brackets are the
ranges of original data samples. The general ordering of error, from lowest to highest, is
Sopt < Ssig < Swav < Sbit < Smag < Slvl.
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(a) by level (Slvl) (b) by bit plane (Sbit) (c) by wavelet norm (Swav)

(d) by magnitude (Smag) (e) by signature (Ssig) (f) reference

Figure 6.4: Volume renderings of a 643 region of plasma data set at 0.2 bps. Slvl captures the
background (purple-blue) well, whereas Sbit captures the fine details better. Swav combines
the strength of both. Ssig, however, produces the most accurate rendering in overall.
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(a) boiler, [2.020e−9, 0.148]
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(b) diffusivity [1.063e−10, 0.497]

0.5 1.0 1.5 2.0 2.5 3.0
Bits per sample

0.0

0.1

0.2

0.3

0.4

0.5

0.6

G
ra

di
en

t e
rr

or

by bit plane
by level
by magnitude
by wavelet norm
gradient-optimized
gradient signature

(c) turbulence [0.465e−3, 12.19]
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(d) pressure [2.542e−6, 0.536]

Figure 6.5: Gradient error of reconstructed functions. Lower gradient error is better. Leading
zero packets are removed, and the plots are truncated in the same way as in Figure 6.3. The
numbers in brackets are the ranges of original gradient magnitudes. The trend in error, in
all cases, is Sgrad-opt < Sgrad-sig ≈ Sbit ≈ Swav < Smag < Slvl.
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(a) by bit plane (Sbit) (b) by wavelet norm (Swav)

Figure 6.6: A 1D line extracted from plasma, and reconstructed using Sbit and Swav at 0.6
bps. The original data is in orange and the reconstructions are in blue. Sbit is worse at
capturing the function values (seen as a slight vertical shift) but it is comparable to Swav in
capturing the shape of the function, which is important for gradient computation.

(a) by level (Slvl) (b) by bit plane (Sbit) (c) by wavelet norm (Swav)

(d) by magnitude (Smag) (e) by signature (Sgrad-sig) (f) reference

Figure 6.7: The x-component of the (643) gradient field of turbulence, reconstructed at 0.3
bps. Sbit, Swav, and Sgrad-sig produce visually comparable gradient fields.
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(a) boiler [−0.393, 0.221]
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(b) diffusivity [−0.404, 0.269]
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(c) turbulence [−17.44, 11.99]
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(d) pressure [−0.467, 0.432]

Figure 6.8: Laplacian error comparison among streams. The plots are truncated to
better highlight differences without discarding important information. The numbers in
brackets are the ranges of the original Laplacian fields. In all cases, in terms of error,
Slap-opt < Slap-sig < Sbit < Swav < Smag < Slvl.
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(a) boiler
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(b) diffusivity
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(c) kingsnake
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Figure 6.9: Comparison of histogram errors among streams. Plots are truncated to
highlight differences without hiding important trends. In general, in terms of error,
Shist-opt ≈ Shist-sig ≈ Swav < Slvl,Sbit,Smag. The erratic behavior at the beginning for
kingsnake is likely due to the data being too noisy. The especially poor performances of Sbit
for boiler and foam are due to the “shifting” effect explained in Subsection 6.3.3. Crossover
points between Sbit and Slvl are explained in Figure 6.10.
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Figure 6.10: Histogram error curves produced by Sbit and Slvl, for boiler, with and without
leading zero bits. The vertical axis is in log scale. The error for Sbit reduces in a stair-step
fashion, where each step corresponds to a new bit plane streamed. Sbit benefits significantly
more from the removal of leading zero bits (the blue curve shifts more to the left).
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Figure 6.11: Histograms of the boiler data set, reconstructed at 0.3 bps. Slvl, Swav, and
Shist-sig produce histograms that share a shape similar to the reference histogram, with most
of the peaks and valleys preserved. In contrast, Sbit produces a spurious peak not found in
the reference. Finally, Smag’s histogram has a widely skewed distribution where too many
values fall into the first bin.
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(a) pressure, #cells = 36149
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(b) kingsnake, #cells = 45783
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(c) plasma, #cells = 24856
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(d) turbulence, #cells = 33742

Figure 6.12: Comparison of isosurface errors among streams. Plots are truncated to highlight
differences without hiding important trends. The number of cells that each original surface
occupies is reported. The trend in error is Siso-opt < Siso-sig ≈ Swav < Sbit < Smag << Slvl.
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(a) by level (Slvl) (b) by bit plane (Sbit) (c) by wavelet norm (Swav)

(d) by magnitude (Smag) (e) by signature (Siso-sig) (f) reference

Figure 6.13: Rendering of isosurfaces at isovalue of 0.2, at 0.6 bps, for the pressure data set.
The surfaces are colored by the x-component of the normal vector at each point. Swav and
Siso-sig produce surfaces that are closest to the reference, followed by Sbit, Smag, and Slvl.
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(a) Srmse-sig (b) Slap-sig (c) Slap-opt (d) Shist-sig

Figure 6.14: Bit distribution across subbands at 1.6 bps for signature-based streams (top), and
corresponding stream signatures (bottom). The data is a 2D slice from diffusivity. Subbands
are separated by red lines. The color of each pixel indicates the bit plane at which the
corresponding coefficient currently is. Brighter greens correspond to more precision. Both
the top and the bottom rows show that Shist-sig allocates more bits to the lower subbands,
while Slap-sig prefers to stream bits from higher subbands. Srmse-sig is somewhere in the
middle. Both Slap-sig and Slap-opt share the same signature by definition but only Slap-opt
provides spatial adaptivity, seen as nonuniform colors in each subband.

Table 6.1: I define various types of data streams, including data-independent, data-
dependent, task-independent, and task-dependent streams. S[task]-sig can be data dependent
or task dependent, depending on the stream from which it is derived.

Symbol Name Data Dependent Task Dependent

Slvl by level ✗ ✗

Sbit by bit plane ✗ ✗

Swav by wavelet norm ✗ ✗

Smag by magnitude ✓ ✗

S[task]-opt task-optimized ✓ ✓

S[task]-sig by signature ✓/✗ ✓/✗
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Table 6.2: All data sets used in experiments. The resolution of data sets is 643 and they are
subsets of the original volumes (no downsampling performed).

Name Type Data type

boiler [268] combustion simulation float64
plasma [104] magnetic reconnection simulation float32
diffusivity [48] hydrodynamics simulation float64
pressure [48] hydrodynamics simulation float64
turbulence [62] fluid dynamics simulation float32
kingsnake [97] scan of a snake egg uint8
flame [126] combustion simulation float32
csafe fluid dynamics simulation uint8
enzo v [215] cosmology simulation float32
brain microscope image of a marmoset brain uint8
foam [189] CT scan of an aluminum foam uint16
vismale CT scan of a human uint8
karfs [235] combustion simulation float32
aneurysm scan of brain aneurysm uint8
velocity z [48] hydrodynamics simulation float64



CHAPTER 7

EFFICIENT TREE-BASED PROGRESSIVE

COMPRESSION OF PARTICLES

With rapid advances in computational capabilities, simulations and equipment can

generate datasets with trillions of particles [30,225,253], posing serious challenges to studying

such datasets for scientific insights. Compression is a promising solution to the problem

of ever-expanding particle data. However, no widely accepted compressors for particle

data currently exist, and attempts to adapt grid-based compressors for particles [131, 279]

have seen limited success. Outside of HPC, techniques designed to compress point clouds

representing scans of objects [153, 194, 257] focus largely on improving compression ratios

at the expense of scalability in performance, making them unsuitable for large datasets. On

the other hand, multiresolution rendering systems [85, 245, 248, 253, 258] can handle large

data but do not aim for effective compression.

Toward bridging the gap between high compression ratios and low-memory-footprint

compression, I introduce novel methods for hierarchy construction, traversal, and encoding

that improve on the state-of-the-art tree-based compression methods. I introduce novel tree-

based particle compression methods that enable high-quality progressive reconstructions

without requiring excessive computational or memory costs. I focus on compressing particle

positions, since they are needed in almost all applications and, in many applications, are the

only attributes needed. Particle positions in scientific applications are difficult to compress

losslessly, since they are often specified to such precision that many lower order bits are

essentially random. Nevertheless, valuable trade-offs can be made in the space of lossy and

progressive (de)compression, in which a decompressor produces approximations that can

be progressively refined by decoding more bits that are streamed from the disk or over

the network. Progressive decompression allows the user to immediately work with data

approximations that improve over time without having to wait for the full data to load or
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decompress, which can greatly enhance the user experience and accelerate the rate of at

which insights are obtained. A progressive decoder can also adapt to the computational

resources and time available since decompression can stop as soon as a certain time or data

size threshold is reached.

7.1 Tree construction
Here I discuss the method of Devillers and Gandoin [57] (DG), which serves as a base

upon which my technical contributions are built. The DG k-d-tree-based coder (implemented

in Google’s Draco [1]) has competitive compression ratios while being very fast and general,

partly due to the coding scheme being nonstatistical (i.e., it does not rely on knowing the

distribution of the particles). This method constructs a k-d tree where each node stores the

number of particles, n, encapsulated by a bounding box, B. A given node (B, n) is split

into two children (B1, n1) and (B2, n2), with B1 and B2 formed by splitting B exactly in the

middle along one of the dimensions, and n1 and n2 being the numbers of particles bound by

B1 and B2.

By construction, only n1 needs to be encoded at each node, since n2, B1, and B2 can

be inferred. Furthermore, n1 can be encoded using approximately log2 (n + 1) bits (since

0 ≤ n1 ≤ n). As n decreases toward the leaf level, the number of bits needed for encoding

each node gets smaller, resulting in compression. The tree can be implicitly built, traversed,

and encoded at the same time, by having the encoder partition an array of particles inplace,

following a certain traversal order, which the decoder also follows. Here, the term k-d tree

always refers to a tree constructed with this method.

Figure 7.1 gives an example for the DG coder. In their paper, the authors give a

theoretical analysis on the number of bits required to separate the particles. Assuming the

tree is balanced and every split divides the number of particles in half, on tree depth k,

the total number of bits needed is approximately 2k log2 (
N
2k + 1), with N being the total

number of particles. The total number of bits needed to separate the particles is therefore∑log2 N−1
k=0 2k log2 (

N
2k + 1) ≤ 2.4N. Using this result, the paper also gives a lower bound on

the number of bits saved using the k-d tree coder compared to verbatim encoding of the

particle positions, which is N log2 N. Since O(N log2 N) is also the number of bits needed to

encode the relative ordering of the particles (of which there are N!), the k-d tree compresses
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by discarding the original order of particles, on top of compression achieved by quickly

separating particles from empty space.

7.1.1 Generic tree-based decoder

I give a generic template for a decoder that can be stopped at any point to produce an

approximation to the original particles. The inputs include the total number of particles n0,

an initial bounding box B0, and a bit stream bs storing the encoded bits. A data structure c,

supporting a Push and a Pop operations (e.g., a stack or queue), keeps track of the traversal

front. In each iteration, a front node (B, n) is popped from c, followed by an optional

callback, which, depending on whether (B, n) is a leaf, can append it to an output list of

particles or to a tree. For inner nodes, the number of particles in the left child (i.e., n1) is

decoded from bs with the knowledge of n. (B, n) is then Split into two children, which are

then pushed back into c, and the whole process repeats until either c is empty or when

Done(bs) is true (e.g., when enough bits have been read from bs).

Algorithm 7.1 Generic tree-based decoder. Inputs: n0 particles in bounding box B0,

bitstream bs, node container c (e.g., stack, queue).

1: function DecodeTree(n0, B0, bs, c)

2: c.Push(B0, n0) ▷ push node (B0, n0) to c

3: d← x ▷ initial dimension of splitting

4: while not Done(bs) and not c.IsEmpty do

5: (B, n)← c.Pop

6: if n = 0 then

7: continue

8: if IsLeaf(B, n) then

9: LeafFunc(B, n) ▷ e.g., output a particle

10: continue

11: else

12: InnerFunc(B, n) ▷ e.g., create a tree node

13: n1 ← Decode(n, bs) ▷ particles in the left child

14: n2 ← n− n1 ▷ particles in the right child

15: B1, B2 ← Split(B, d) ▷ split B along d
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16: d← Next(d) ▷ e.g., if d = x, Next(d) = y

17: c.Push(B1, n1)

18: c.Push(B2, n2)

7.1.1.1 Tree construction

Most tree-based compression techniques work by encoding (and decoding) nodes that

implicitly give quantized particle positions. A general template for a tree-based decoder is

given in 7.1 in the Appendix. Encoding the number of particles may at first seem wasteful:

it has been noted [232, 234] that at coarse levels, occupancy-based octrees are better than

the k-d tree used by DG [57], since encoding the number of particles in child nodes often

requires several bits compared to at most one bit for occupancy. However, occupancy

encoding requires both children of a node to be coded instead of just the left child. Toward

the leaf level, past the particle separation stage, when a single bit is needed to encode n1,

this extra cost is significant.

Furthermore, as seen in Subsection 7.2.1, encoding the number of particles also allows

us to perform adaptive tree traversal to minimize reconstruction error, which is estimated

using the number of particles and the spatial extent of a node. Finally, by knowing the

number of particles, I can employ a grid-based approach and switch to encoding the number

of empty grid cells when the grid is too dense (i.e., it has more particles than empty cells),

which significantly saves coding cost (as discussed in Section 7.1.1.1).

7.1.1.2 Odd-even splits and odd-even trees

When decoding is run to completion, all tree nodes are visited, in an order that depends

on the traversal strategy. In practice, however, it is often desirable to traverse and decode

large trees only partially to save I/O bandwidth, memory, and decoding time, reconstructing

particles whose positions only approximate the original particles’ positions. In this context,

the shape of the tree and the traversal order can profoundly affect the accuracy of the

approximation.

• Trade-offs between depth-first and breadth-first traversals. On a traditional k-d

tree constructed with the typical k-d split, a node’s bounding box B is split along a

certain dimension (one of x, y, z in 3D) to give children boxes B1 and B2. BT visits B2
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after B1 on each tree level, whereas DT only visits B2 after B1 has been fully visited.

Therefore, when stopped midway, BT often gives coarse representations of the whole

space whereas DT reconstructs a spatial region perfectly but completely misses the

rest. In most cases, the former behavior is preferred.

DT however is significantly less resource intensive, since it requires only a small

stack whose size is at most the height of the tree (O(log2 n)), whereas BT requires a

queue large enough to keep all nodes at the current depth, which can grow as large as

the total number of particles (O(n)). A k-d split thus offers two contrasting choices:

high-cost and coarse reconstructions for both children (with BT), or low-cost and

perfect reconstruction for one child but none of the other (with DT). Here, cost mostly

means memory footprint, but a high memory footprint often also translates to lower

cache utilization and accordingly lower speed.

• Odd-even splits. To alleviate the main drawback of DT while retaining its main benefit,

I introduce the notion of an odd-even split, which spatially “interleaves” the children

boxes B1 and B2 by having each contain many disjoint slices instead of being a whole

contiguous region. This scheme is inspired by the hierarchical indexing scheme [223]

and the lazy wavelet transform [277], multiresolution techniques invented for data

sampled on regular grids.

I first impose (but do not build) a regular grid on top of the particles such that each cell

contains at most k particle. One way to build such a grid is to recursively subdivide

the particles’ bounding box into equal halves along the longest dimension, stopping

when the target k is met. For the odd-even splitting scheme to work best, k should

ideally be 1. However, when particle coordinates are given in floating point, k = 1

may produce a grid that is too large if any two particles have almost exactly the same

coordinates. In this work I use k = 1 in all experiments, but in general k is a parameter

that can be set by the user. In addition, to avoid potential rounding errors when

multiplying and dividing floating point numbers, I work with quantized particle

positions in deciding which grid cell a particle belongs to, but note that the original

particles’ positions can still be encoded losslessly if needed.

After the full grid is defined, the root of the tree is associated with the full grid,
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and every other node is associated with a different subgrid G and the particles

contained in G. If G is of dimensions Gx ×Gy ×Gz, I index its cells from (0, 0, 0) to

(Gx − 1, Gy − 1, Gz − 1), along three fixed axes. An odd-even split decomposes a node

(G, n) into (Ge, ne) and (Go, no), such that (Ge, ne) contains the even-indexed cells in

G (along the dimension of splitting) and the ne particles occupying those cells, while

(Go, no) contains the rest of the (odd-indexed) cells and particles.

• Odd-even trees. A tree constructed exclusively from odd-even splits is called an

odd-even tree, illustrated in Figure 7.2 in contrast to a k-d tree. The idea of the odd-even

split is that either the odd or the even child node represents a coarse approximation

of the particle set associated with the parent node, so that a DT can never miss an

entire region as with k-d splits. Odd-even trees carry this idea to an extreme where

every node is split in the odd-even scheme, and therefore DT on an odd-even tree

provides the best coarse-to-fine refinement of the full data with respect to the number

of particles reconstructed, but not in terms of coding cost (or compression ratio) which

will be discussed later.

• Odd-even subsampling. Picking either the odd or the even subgrid to traverse can

be viewed as a subsampling method. It may at first seem that random subsampling

(e.g., as done in [288]) achieves the same effects as odd-even subsampling while being

simpler. However, unlike random sampling, odd-even sampling produce subgrids

(Go and Ge) that are half the size of the parent grid G, which is important for locating

the particles using fewer bits. Unfortunately, an odd-even tree is still not conducive

to compression. This is due to the fact that for most datasets, particles do not scatter

randomly in space but form clusters and structures that can be well separated from

empty cells. With odd-even splits, the empty cells are “distributed” into the odd and

even subtrees, effectively increasing the number of tree nodes to be coded. Instead,

k-d splits could be used to quickly cull away entire empty subtrees (as can be seen

in Figure 7.3).

• Coding costs. For a more quantitative analysis, I calculate the number of bits required

to locate, using a k-d tree, n particles in a grid G with G cells, of which n contain
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particles and G− n are empty. Denote the answer as T(n, G). In the best case, a k-d

split will put most particles in one child and empty space in the other, leading to

T(n, G) = (log2 n) + T(n, G/2), i.e., n stays the same but G is reduced by half. After

i = log2 (G/n) such iterations, G/2i and n are approximately equal, i.e., G/2i < 2n.

The k-d tree now requires ≈ 2.4n bits to separate the n particles, and an additional n

bits to finally locate the particles (assuming at the leaf level, each particle needs to

be separated from one empty cell). In contrast, an odd-even split implies a different

recurrence relation: T′(n, G) = (log2 n) + 2T′(n/2, G/2) (i.e., both n and G are halved

but two substrees are created instead of one). After the particles are separated from one

another (after ≈ 2.4n bits), each particle needs to be further located among G/n cells,

for a cost of n log2 (G/n) additional bits. Therefore, the difference between T(n, G)

and T′(n, G) is that between n + log2 n log2 (G/n) (for the k-d tree) and n log2 (G/n)

(for the odd-even tree). The two are similar if G is close to n (the grid is dense in

particles), but in most cases, G is significantly larger than n, making the odd-even tree

worse. In experiments, I have seen odd-even trees that are almost twice as large as a

k-d tree for the same input. I later discuss a solution in Section 7.1.1.3.

• Encoding dense particle grids. Besides facilitating the odd-even splits, an underlying

grid allows us to effectively encode sparse as well as dense particle sets (relative to the

size of the grid). Whenever the number of particles, n, is greater than half the number

of cells in G, the algorithm can switch from encoding the number of particles in the

left child (n1) to encoding the number of empty cells in the left child, i.e., G/2 − n1,

and thus more quickly bound the values to be encoded further down the tree. In

the extreme case where every cell contains a particle, my method simply stops after

encoding the number of particles at the root node, since the number of empty cells is

now 0, whereas other methods, such as DG [57] or MPEG [257] which encodes node’s

occupancy, will keep refining this dense grid until the individual cells.

• Tree traversal as particle indexing. To decode particles’ positions by traversing a tree

is to reconstruct the bits of their quantized integer coordinates, or, equivalently, to

index (order) the particles using their coordinate bits. It is well known that a k-d tree

sorts the particles using their Morton codes, which interleave particle coordinate bits
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in x, y, z, with an interleaving pattern that depends on the order of the dimensions

along which nodes are split. In other words, a k-d tree reconstructs the interleaved

coordinate bits from left to right (MSB to LSB) if traversed using DT, whereas an

odd-even tree reconstructs them from right to left (LSB to MSB) (see Figure 7.4), since

the LSB determines whether a particle is “odd” or “even”.

7.1.1.3 Hybrid trees

As seen in 4.1, odd-even trees create too many nodes because every odd-even split

distributes both the particles and the empty cells into two children, instead of (mostly)

particles in one and empty cells in the other. To reduce this adverse impact on compression

while retaining most of their benefits, it is necessary to reduce the use of odd-even splits.

Here, I borrow a technique from the wavelet literature, where multiresolution decomposition

is done by recursively transforming only the low-pass filtered subband in every iteration.

Similarly, I restrict the use of odd-even splits to only left child nodes, with k-d splits used

everywhere else. Furthermore, once a k-d split is used, subsequent descendant splits will

all be k-d splits. I also use the convention that the left child node is (Ge, ne), i.e., it contains

the even-indexed cells. The dimension of splitting is the largest dimension of the parent’s

grid G, as is also the case for all the other trees discussed in this chapter. Constructed this

way, the impact of the hybrid trees on compression is minimal; in the worst case, I have

noticed only a 5% increase in compressed size compared to k-d trees.

• Resolution levels. From top to bottom, every odd-even split creates a new, coarser

resolution level, which consists of nodes in the even-indexed subtree. A hybrid tree

with L resolution levels contains a sequence of exactly L− 1 odd-even splits, at nodes

found by traversing down the left child L− 2 times from the root (see Figure 7.5a for

an example with L = 3). L can be automatically set so that the chain of odd-even

splits ends when no particles or cells are left to split. Assuming that left children are

always visited first, DT on hybrid trees visits the resolution levels from coarse to fine,

producing a “breadth-first” walk of space similar to BT on k-d trees but with much a

smaller memory footprint.

Although hybrid trees are designed with DT in mind, they also support BT, noting

that BT is best used only within each resolution level and not across resolution levels
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(note that nodes at the same depth level may belong to different resolution levels, see,

e.g., Figure 7.5a). My proposed hybrid tree is also only one of the many possible

combinations of k-d and odd-even splits, which may be useful for different purposes.

• Particle indexing. From the perspective of particle indexing using their interleaved

quantized coordinates, hybrid trees correspond to the hierarchical Z (HZ) ordering [223]

of particles. An HZ ordering sorts the particles first by their resolution level, then by

their index within the level. This is done by swappping the least significant one bit

in a particle’s Morton code (whose position from the LSB determines the particle’s

resolution level) and the bits to its left (which constitute the particle’s intra-level

index). Figure 7.4 gives an example of this scheme. The HZ indexing scheme was

first proposed by Pascucci and Frank [223] and generalized by Hoang et al. [115] for

multiresolution decomposition of regular grids. Here, I adapt the scheme to construct

a multiresolution particle tree.

• Refinement bits. Refinement bits are bits that further locate each particle in its

corresponding cell (see Figure 7.5, gray nodes at the bottom). All refinement bits

at the same tree depth form a bit plane. The number of refinement bit planes vary

across datasets. For some, there are no refinement bits, i.e., particles are specified

with precision low enough that the particles are exactly located just by the grid that

separates them. In the other spectrum, scientific simulation data are often dominated

by refinement bits due to the particles being specified with relatively high precision

compared to their density. For hybrid trees, the refinement bits are stored in depth-first

order: particles are completely refined one by one, in the (depth-first) order that

they appear in the tree. For example, in Figure 7.5a, the refinement bit stream is

10(a)11(b)00(c)10(d)01(e)11( f )00(g)00(h)10(i)10( j)11(k).

• Coding costs. As in Section 7.1.1.2, let T(n, G) denote the number of bits needed to

locate n particles in G grid cells using a k-d tree. For a hybrid tree, the number of bits to

code a subtree under node (G, n) is (log2 n) + Tl(n/2, G/2) + Tr(n/2, G/2). The term

Tr(n/2, G/2) (for the right subtree) is just T(n/2, G/2) since the right subtree is always

a k-d tree. The term Tl(n/2, G/2) (for the left subtree) can again be decomposed
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into log2 (n/2) + Tl(n/4, G/4) + T(n/4, G/4). Following the recurrence to the end

and ignoring the various log2 (n/2i) terms that are insignificant, it can be seen that

the cost of encoding the whole hybrid tree is approximately
∑

i T(n/2i, G/2i). Since

T(n, G) is approximately linear in n (see Section 7.1.1.2), T(n, G) = 2T(n/2, G/2). The

sum
∑

i T(n/2i, G/2i) therefore is approximately just T(n, G), meaning the coding cost

of a hybrid tree is approximately the same as that of a k-d tree for the same input

(the difference is of order O(log2 n log2 (G/n)) bits which is essentially the number

of resolution levels multiplied by the cost to cull the empty cells on each level). This

analysis also shows that if a hybrid tree is traversed with DT, so that the resolution

levels are visited from coarse to fine, the (partial) coding cost doubles after each

resolution level as the number of particles, n, presumably also doubles.

• Reconstruction error. To quantify the reconstruction error for each original particle,

I find the nearest particle to it among the reconstructed particles. I give an upper

bound for the reconstruction error in both cases: BT on a k-d tree (BT-kd) and DT

on a hybrid tree (DT-hybrid). Suppose the two particles form two opposite corners

of a box of dimensions dx × dy × dz, the values of dx, dy, dz can be bounded using k,

understood to be either the number of tree depths not yet traversed (for BT-kd), or

the number of resolution levels not yet traversed (for DT-hybrid). For both cases, it is

guaranteed that dxdydz ≤ wxwywz2k, with wx, wy, wz being the dimensions of each cell

at the leaf level. From the analysis in the coding costs paragraph, it is known that

the total coding cost for the k-d tree is approximately the same as that for the hybrid

tree. Moreover, this cost doubles after each tree depth level (for the k-d tree) and after

each resolution level (for the hybrid tree). Therefore, BT-kd and DT-hybrid tree have

similar coding costs as well as similar reconstruction error bounds. Note that when

all particles are located to their respective cells, the reconstruction error is bounded by

the dimensions of a cell i.e., wx ×wy ×wz, and each refinement bit plane reduces this

bound by half.

In terms of reconstruction error, the main difference between the two schemes is that

DT-hybrid puts the reconstructed particles exactly where the corresponding original

particles are, whereas BT-kd puts them in the middle of the bounding boxes at the
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traversal front. Depending on the dataset, one choice may be preferred over another

(Section 7.4). Because both schemes have approximately the same total coding costs

but DT-hybrid partially reconstructs particles to a higher precision, it also tends to

generate significantly fewer particles compared to BT-kd when both are stopped

midway at the same decoding bit budget.

• Memory footprint with DT. I do not explicitly construct the tree in memory, as node

values are simply encoded to and decoded from a bit stream, following a certain

traversal order. Therefore, only the size of the data structures used for traversal, and

not that of the tree itself, counts toward the memory footprint. Let G denote the total

number of grid cells and N the total number of particles. Using DT, a hybrid tree

can be traversed using a stack whose size is the bounded by the height of the tree,

which is log2 G + 1. For each element in the stack, log2 (N + 1) bits are needed to

keep track of the number of particles. The other information required for traversal,

namely a node’s associated grid, its resolution level, the dimension of splitting, and

the type of split can all be deduced from the path connecting the node to the tree’s

root, encoded with log2 G + 1 bits. The encoder (but not decoder) would also need

to keep track of the range of particles that each node encompasses, for a total of

log2 (G + 1) additional bits per node. In short, the memory footprint of the encoder is

(log2 G + 1)2 + log2 (N + 1) bits, while that of the decoder is (log2 G + 1)2 bits. Even

when N = G = 264− 1, both the encoder and the decoder require trivial amounts of

memory (less than 600 bytes).

• Hybrid tree encoding. I give the pseudocode for a hybrid tree encoder in 7.2.

Compared to 7.1, this algorithm is written in recursive form for simplicity, includes

details on when to use odd-even splits, and how the algorithm switches to encoding

empty cells if the current grid is dense in particles (lines 9 – 11). A new EncodeRefine-

mentBits step is invoked to output a particle’s in-cell refinement bits (i.e., gray nodes

in Figure 7.5). Finally, I further specify the actual low-level encoding method to be the

commonly used truncated binary coding [202, 284].

Algorithm 7.2 Depth-first, recursive hybrid tree encoding. Inputs: a set of particles P

residing in a grid G, split type swhich is either odd-even or k-d (it is odd-even initially),
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dimension of splitting d, and bitstream bs.

1: function DtHybridEncode(P, G, s, d, bs)

▷ step 1: encode in-cell refinement bits

2: if G = 1 then ▷ one particle in a single cell

3: EncodeRefinementBits(P, G, d, bs)

4: return

▷ step 2: split the current node

5: P1, P2, G1, G2 ← Partition(P, G, s, d)

▷ step 3: encode the current node

6: n← |P| ▷ number of particles in current node

7: n1 ← |P1| ▷ number of particles in the left child

8: if G− n < n then ▷ grid is dense in particles

9: n← G− n ▷ encode number of empty cells

10: n1 ← |G1| − n1

11: TruncatedBinaryEncode(n1, n, bs)

▷ step 4: recurse

12: d← Next(d) ▷ next dimension of splitting

13: if |P1| > 0 then ▷ left child

14: DtHybridEncode(P1, G1, s, d, bs)

15: if |P2| > 0 then ▷ right child

16: s← k-d ▷ by definition of hybrid-trees

17: DtHybridEncode(P2, G2, s, d, bs)

18:

19: function Partition(P, G, s, d)

20: P1, P2, G1, G2 ← ∅

21: if s = odd-even then

22: P1, P2, G1, G2 ← OddEvenPartition(P, G, d)

23: else

24: P1, P2G1, G2 ← KdPartition(P, G, d)

25: return P1, P2, G1, G2
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7.1.2 Block-hybrid trees

A problem wit hybrid trees is that each resolution level is still traversed region-by-region,

resulting in uneven error distribution. To mitigate this problem, I split the whole tree into

multiple blocks (subtrees) and interleave their traversals to reduce error more uniformly.

The resulting block-hybrid tree contains multiple blocks that can be decoded independently.

By adaptively allocating bits across blocks, I can lower the overall reconstruction error, or

prioritize certain blocks for the task at hand. Furthermore, blocks can be randomly accessed

or decoded in parallel.

To construct a block-hybrid tree, I first use k-d splits to form a coarse portion (a k-d

subtree at the top), then combine k-d splits with odd-even splits to form a medium portion

(several hybrid subtrees), and finally use the in-cell refinement bits to form a fine portion.

Each leaf of the coarse-portion k-d subtree creates a hybrid sub-tree, or block. The coarse

and medium portions together refine the full grid until at least the cell level (i.e., no leaf

node contains more than one particle). The fine portion further locates individual particles

within the respective cells. Figure 7.5b shows an example of a block-hybrid built for the

running example with 11 particles in 2D. From a particle indexing perspective, block-hybrid

trees use hierarchical-Z indexing for the middle portion, and forward Morton for the rest

(see Figure 7.4).

• Refinement bits. Since one main goal of block-hybrid trees is to distribute reconstruc-

tion error more uniformly in space, I store the in-cell refinement bits verbatim in bit

plane order, i.e., in breadth-first instead of depth-first order as done for hybrid trees.

In particular, each bit plane contains one refinement bit for each particle in the block,

in the order that a medium-phase DT visits the particle. To decode each refinement

bit, a bounding box that encompasses the current particle needs to be subdivided.

To avoid buffering such bounding boxes for later refinement in typical breadth-first

manner, I compute them on-the-fly from the current position of each particle and

the dimensions of grid cells at the current tree depth. Therefore, no extra memory is

needed in addition to an array storing the positions of the decoded particles, which is

presumably always present.

• Flexible decoding. A block-hybrid tree, once encoded, can be decoded in different
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ways; in particular, the blocks can be decoded independently and to different extents.

To support independent decoding, the compressed bit streams for individual blocks

are stored separately (see Figure 7.6). Decoding of higher resolution particles can

also be skipped in favor of more refinement bits for lower resolution ones. Such

a strategy, which trades resolution for precision, may be desired if the number of

output particles needs to be limited due to resource constraints. Since blocks are

encoded in independent bit streams, a decoder can freely jump to any block to continue

decoding/traversal if needed. The user can also supply a scoring function to rank

blocks during traversal. In Subsection 7.2.2, I introduce one such function, which

interleaves traversal of blocks to lower the average reconstruction error. Other criteria

are possible, for example, during rendering, certain blocks may be prioritized if they

are closer to the camera, or since they are known to contain features of interest.

7.2 Tree traversal
To achieve better progressive reconstruction than BT and DT, the traversal should be

more adaptive, i.e., nodes with a potentially low cost of traversal (in terms of number of bits

to decode) and high gains (in terms of reduction of error) ought to be prioritized. I introduce

two such adaptive orders: adaptive traversal (AT) for k-d/hybrid trees and block-adaptive

traversal (BAT) for block-hybrid trees.

7.2.1 Adaptive traversal

For k-d trees, I generalize the container c in 7.1 from either a stack or a queue to a

priority queue, which allows us to perform rate-distortion optimization during traversal,

i.e., prioritizing nodes that are more important with respect to some error metric and coding

cost. Concretely, the importance score of a given node (B, n) is

n(d/2)2

log2 (n + 1)
, (7.1)

where d is the length of B along the current axis of splitting. The denominator captures

the cost of decoding the current node, while the (d/2)2 term captures the (squared) error

reduction per-particle obtained by decoding this node, assuming the extreme case where

all n particles fall into either the left or the right child. Intuitively, spatially larger and

denser nodes are prioritized so that reconstruction errors are reduced for more particles. I
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expect AT with this heuristic to work best (compared to BT) when the particles are highly

nonuniformly distributed, and therefore the importance scores of same-depth nodes are

notably different.

• Alternative score function. My proposed importance score is simple yet works well

in practice to improve the rate-distortion trade-off over BT for a wide range of datasets

(see Section 7.4). Regardless, this score is still a heuristic and thus is not guaranteed to

work for all datasets. I also demonstrate modifications to the importance function

by reducing the emphasis on node density (i.e., by removing n from the numerator),

which I have observed to work better for particles representing a surface. I anticipate,

that in future work, many more importance functions can be devised depending on

the data and task at hand, but all should be supported by AT.

7.2.2 Block-adaptive traversal

Although AT improves on BT in reconstruction quality, it has a similarly high memory

footprint in practice (see Subsection 7.4.3). Furthermore, AT works with individual nodes

and not blocks, so it cannot be used as is to efficiently traverse a block-hybrid tree. Here, I

generalize AT to block-adaptive traversal (BAT), which is also data-adaptive but works with

entire blocks of nodes, and has asymptotically constant memory footprint similarly to that

of DT.

With BAT, the coarse portion of a block-hybrid tree is traversed with either BT or AT.

Traversal of the medium portion only begins after traversal of the coarse portion completes.

The medium portion is traversed in iterations in a data-dependent round-robin manner.

Each iteration consists of two steps: first, a block is picked to traverse using a priority queue

that ranks blocks based on some criterion, then, the chosen block is traversed using DT. The

block at the top of the priority queue is traversed for either a certain number of decoded

bytes or a certain number of particles, then its priority is updated in the queue, and the

process repeats with the next iteration.

• Heuristic for ranking blocks. The ranking of blocks is handled by a user-supplied

scoring function; here I propose one. Between two partially decoded blocks, I always

prioritize the one at a coarser resolution level. If the two blocks are at the same
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resolution level, the one with a smaller value of n∗l /nl is prioritized, where nl is the

total number of particles in the block on resolution level l, and n∗l is the number of

those already visited by the per-block DT. The idea behind this heuristic is to distribute

reconstruction error across blocks as uniformly as possible, so that the average error is

reduced.

• Reconstruction error. By construction, nodes on the same resolution level are

associated with subgrids with the same internal spacing (i.e., spatial distances in x, y, z

between neighboring cells). This spacing gives an upper bound on the reconstruction

error, since particles that fall in between neighboring cells in the current subgrid have

not been reconstructed (they belong to finer resolution levels). Therefore, forcing the

blocks to be refined to the same resolution level effectively forces approximately the

same upper bound for reconstruction error everywhere. Once the blocks are at the

same resolution level, the ratio n∗l /nl indicates how much of the given level has been

traversed.

• Memory footprint. Given a tree of height H, the memory footprint of BAT is controlled

by Hc, the height of the coarse k-d subtree. Since there are at most 2Hc−1 blocks and

each block contains a sssof size at most H −Hc, the total number of elements in the

different containers is bound by 2Hc−1 (qqq) +2Hc−1(H −Hc) (ssss) + 2Hc−1 (priority queue).

In contrast, the size of the queue for BT, if used exclusively for the whole hierarchy, is

bounded above by 2H−1, which is often several orders of magnitude larger than 2Hc−1,

since a typical Hc is only half of H. In practice, the Hc chosen should be large enough

so that the error is more uniformly distributed and that random access to the blocks

is more fine-grained, but also small enough to not turn BAT into BT and also to not

create too many blocks.

• Block-adaptive traversal. The pseudocode for BAT is given in 7.3. b denotes the

current block being traversed, with b.l being the block’s resolution level, b.n its total

number of particles and b.n∗ its number of visited particles, as described above. In the

CoarseTraverse and MediumTraverse functions, n denotes the current node at the

traversal front, with n.l storing its resolution level and n.n its number of particles. The
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FineTraverse function performs fine-phase (breadth-first) traversal, which decodes

the in-cell refinement bits.

Algorithm 7.3 Block-adaptive traversal. Inputs: a priority queue of blocks q, coarse bit

stream bs.
1: function BlockAdaptiveTraverse(q, bs)

2: if q.IsEmpty then ▷ still in coarse traversal phase

3: CoarseTraverse(cs)

4: while not q.IsEmpty do

5: b← q.Pop ▷ b is the block with the largest error

6: if b.n∗ < b.n then ▷ not all of b’s particles visited

7: MediumTraverse(b)

8: q.Push(b)

9: else ▷ all particles visited, do fine traversal phase

10: FineTraverse(b)

11: if not AllBitsRead(b.bs) then

12: q.Push(b)

13:

▷ Coarse-phase traversal: Algorithm 1 with a queue container, bitstream bs and the

following callback.

14: function CoarseTraverse(bs)

▷ LeafFunc ▷ from each leaf we create a block b

15: b.l← 0 ▷ with resolution level 0,

16: b.n← n.n ▷ and appropriate number of particles,

17: b.n∗ ← 0 ▷ and number of visited particles

18: b.st← empty stack

19: b.st.Push(n) ▷ n is the root node of block b

20: q.Push(b)

21:

▷ Medium-phase traversal: Algorithm 1 with b.st as the (stack) container, b.bs as the

bitstream, and the following callbacks.

22: function MediumTraverse(b) ▷ DT of block b
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▷ LeafFunc ▷ each leaf is a particle

23: b.n∗ ← b.n∗ + 1 ▷ a new particle visited

24: b.n∗l ← b.n
∗

l + 1

▷ InnerFunc

25: if n.l , b.l then ▷ reached a finer resolution level

26: b.l← n.l ▷ update the current resolution level

27: b.nl ← n.n ▷ update number of particles

28: b.n∗l ← 0 ▷ reset number of visited particles

29:

▷ Fine-phase traversal: for simplicity, always read an entire bit plane of the input block

b.

30: function FineTraverse(b)

31: for each particle p ∈ b.P do

32: bit← ReadOneBit(b.bs)

33: p← Refine(p, bit)

34: b.l← b.l + 1

7.3 Encoding node values
During decompression, at a node (G, n), a decoder needs to decode n1 with the

knowledge of n and the fact that 0 ≤ n1 ≤ n. The state-of-the-art method [57] uses arithmetic

coding [200] or truncated binary coding [202,284], assuming that n1 is uniformly distributed

in {0, . . . , n}. However, this assumption is often not true in practice, and thus better encoding

methods are possible. I present two such methods here that better predict n1, namely

a nonstatistical binomial coding scheme and a statistical odd-even context coding scheme,

targeting two extreme particle distributions: uniform and highly structured.

7.3.1 Binomial Coding

For data that exhibit approximately uniformly spatial distribution of particles, n1 is

not uniformly distributed in {0, . . . , n} but is more likely to be close to n
2 — a property

that I will exploit to improve the encoding. Given a node with n particles, there are 2n

possible configurations (each of the n particles can fall in either of the two child nodes with
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probability 1
2 ), and there are ( n

n1
) ways for the left child node under consideration to contain

exactly n1 particles out of the n particles of the parent. Therefore, n1 follows the binomial

distribution with parameters n and 1
2 (see Figure 7.7), i.e., P(n1|n) = ( n

n1
)2−n = B(n, 1

2 ).

• Arithmetic coding for small n. For small values of n, this binomial distribution can

be effectively coded using arithmetic coding [200] with a precomputed binomial table.

My arithmetic coder supports integer probabilities whose sum is at most 231, which

means the distribution B(n, 1
2 ) is exactly modeled for n ≤ 30. For every n ∈ {1, . . . , 30},

I precompute a table where the entries are ( n
n1
) for every n1 ∈ {0, . . . , n} (I scale P(n1|n)

by 2n to represent the probabilities with integers). I then compute a prefix sum on

each table to obtain a (scaled) cumulative distribution function (CDF) ready to be used

by the arithmetic coder.

• Binary-search coding for large n. When n > 30, arithmetic coding with exact

probabilities fail because the arithmetic coder uses 32-bit values for its internal states,

which have insufficient precision to distinguish all possible values of P(n1|n), since

the scaled CDF grows exponentially with n, i.e.,
∑n

n1=0 (
n
n1
) = 2n. Note that simply

using 64-bit internal states would not solve the problem, due to potential integer

overflows under multiplications. Instead, I leverage the de Moivre-Laplace theorem [61]

to approximate the binomial distribution with a Normal distribution for large n, i.e.,

B(n, p) ≃ N(np, np(1 − p)), where N is the Normal distribution with mean µ = np

and variance σ2 = np(1− p)). When p ≈ 1
2 , i.e., assuming an approximately uniform

distribution of particles, the theorem states that P(n1|n) follows N(n
2 , n

4 ).

Denoting the CDF of N(n
2 , n

4 ) as F, I use a binary search that locates n1 by halving F

in the search range [ai, bi] for each iteration i, outputting a bit to indicate which half

contains n1. The point of division can be computed using the inverse of F, namely

F−1(x) = n
2 +

√n
2 erf−1(2x− 1), where erf is the error function. Initially, [a0, b0] = [0, n],

and the search stops when either the value is found (i.e., n1 ≤ ai < bi < n1 + 1 for some

i) or the range stops converging, indicating that we run out of numerical precision.

In the latter case, assuming equal probabilities for all values in [ai, bi], n1 − ai can

be encoded using truncated binary coding. I use a mid-short (or centered-minimal)
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code [202] that assigns shorter codewords for values near the middle of [0, . . . , bi − ai].

The pseudocode for the binomial encoder is given by 7.4 in the Appendix.

• Code size gain over truncated binary coding. The theoretical gain achievable with

binomial coding can be assessed using the entropy of the binomial distribution, i.e.,

H ≃ 1
2 log2 (2πenp(1− p)) (the full derivation is in Appendix 7.3.1). For p = 1

2 , I get

H ≃ 1
2 log2 (2πe n

4 ) ≈ 1 + 1
2 log2 n. The normalized entropy (dividing H by log2 n)

thus approaches 1
2 as n tends to infinity and 1 as n tends to 1. In contrast, the

normalized entropy of the uniform distribution is always 1, which means that in

the best case (when n is very large) binomial coding reduces the code length by

half compared to uniform arithmetic coding or truncated binary coding. This gain

makes binomial coding attractive for large data. Finally, binomial coding also works

well with odd-even splits, because such splits tend to produce approximately equal

numbers of particles on the two sides, regardless of the actual particle distribution.

• Binomial coding and entropy. To get a better understanding of the theoretical gain

achievable with binomial coding, I look at the entropy of the binomial distribution, H,

which is

H = −
n∑

k=0

(
n
k

)
pk(1− p)n−k log2

((
n
k

)
pk(1− p)n−k

)
I use the de Moivre-Laplace theorem to get

H ≃ −

∞∫
−∞

dx

σ
√

2π
e−

1
2 (

x−µ
σ )

2

log2

(
1

σ
√

2π
e−

1
2 (

x−µ
σ )

2
)

≃ −

∞∫
−∞

dx

σ
√

2π
e−

1
2 (

x−µ
σ )

2
(
− log2 (σ

√

2π) −
(x− µ)2

2σ2 log2 e
)

By the definitions of a normal distribution and its variance, we have, respectively,
∞∫
−∞

dx
σ
√

2π
e−

1
2 (

x−µ
σ )

2

= 1 and
∞∫
−∞

dx
σ
√

2π
e−

1
2 (

x−µ
σ )

2

(x− µ)2 = σ2 . Therefore,

H ≃ log2 (σ
√

2π) +
1
2

log2 e =
1
2

log2 (2πeσ2)

=
1
2

log2 (2πenp(1− p))
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Algorithm 7.4 Binomial coding. Inputs: CDF tables cdfs, arithmetic bit stream bsa,

truncated binary bit stream bsb, number of particles in the current node n, number of

particles in the left child n1.

1: function BinomialEncode(cdfs, bsa, bsb, n, n1)

2: µ← n/2

3: σ2
← n/4

4: small← n ≤ 30

5: while True do

6: a← ⌈a⌉

7: b← ⌊b⌋

8: if a = b then ▷ n1 = a = b, no need to encode

9: return

10: n← b− a

11: if small then ▷ exact binomial modeling

12: ArithmeticEncode(n1 − a, cdfs[n], bsa)

13: return

14: fa← Fµ,σ2(a) ▷ Fµ,σ2 is the CDF of N(µ, σ2)

15: fb← Fµ,σ2(b)

16: m← F−1
µ,σ2(( fa + fb) /2)

17: if m = a or m = b then ▷ ran out of precision

18: TruncatedBinaryEncode(n, n1 − a, bsb)

19: return

20: if n1 < m then

21: WriteBit(bsb, 0)

22: b← m

23: else

24: WriteBit(bsb, 1)

25: a← m
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7.3.2 Odd-even context coding

For datasets where the particles are not approximately uniformly distributed – and

thus binomial coding does not apply – I propose a prediction scheme based on DT on a

hybrid tree to improve compression. Since the even (left) and odd (right) subtrees under

an odd-even split interleave spatially, they can have very similar distributions of particles

(Figure 7.8). I can therefore leverage their spatial correlations and use one to predict the other.

An odd-even split creates an odd and an even subtree, denoted as To and T̄e, respectively. I

use different notations to indicate that To is always a k-d tree, while T̄e is almost always

a hybrid tree by definition. Using DT, T̄e is trqversed and coded first, and then used as a

reference to predict To.

• Lock-step traversal. Since T̄e and To are different kinds of tree, I first need to transform

T̄e to a k-d tree Te. It is done by invoking a k-d tree building routine on the cells

to which the particles of T̄e have been located. The k-d trees Te and To can now be

traversed in lockstep using DT to maintain spatial correlations between respective

nodes at the traversal front. After To is fully coded, the hybrid subtree combining

Te and To is converted to a k-d tree to serve as the reference for the next resolution

level (Figure 7.9). 7.5 in the Appendix gives the full pseudocode for the odd-even

context encoder. Note that I never explicitly create and store any of T̄e, Te and To in

memory. The conceptual transformation of T̄e from an odd-even to a k-d subtree can

be performed inplace (by partitioning the array storing the input particles) and inline

(computing node values for Te on-the-fly as To is traversed).

• Context coding. During the lockstep DT, the traversal front typically contains two

nodes: (Gs, s) on Te and (G, n) on To (see Figure 7.9). If the number of particles

in the left child of (Gs, s) and (G, n) are s1 and n1, respectively, then n, s, and s1

are known, while n1 needs to be coded. To predict n1 using n, s and s1, I leverage

context-based arithmetic coding [200], in which the knowledge of a vector c1 (the

context) helps narrow down the possible values for n1. I do not use c1 = [n, s, s1]

to encode n1 directly, since any of these numbers can be so large that keeping track

of all possible contexts is impractical. Instead, I work with the log values, namely

m =
⌊
log2 (n + 1)

⌋
, m1 =

⌊
log2 (n1 + 1)

⌋
, r =

⌊
log2 (s + 1)

⌋
, and r1 =

⌊
log2 (s1 + 1)

⌋
.
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The use of log values also make all contexts more reliable, since each context now

appears enough times to be statistically significant. However, in place of n1, we now

must encode both m1 and m2 =
⌊
log2 (n2 + 1)

⌋
, with n2 being the number of particles

in the right child of the current node (i.e., n2 = n− n1). The reason is that in general

m2 in general cannot be inferred from m and m1, except in a few special cases, namely

when m = m1 = 1, m2 = 0, and when m1 = 0, m2 = m.

• Context update To encode m1, the context vector c1 contains more information than

just [m, r, r1]. In particular, c1 = [m, r, r1, r2, l, h], with r2 being the log of the number of

particles in the right child of the reference node (i.e., r2 =
⌊
log2 (s− s1 + 1)

⌋
), l being

the current node’s resolution level and h being its current tree depth. I use a context

table H to maintain and update the conditional probabilities P(m1|c1) on the fly for all

combinations of m1 and c1 encountered during traversal. H is a hashtable, that, when

indexed with a key c1, return a frequency array that gives the conditional distribution

of m1 given c1, i.e., P(m1|c1) = H[c1][m1] /
∑

i H[c1][i].

During traversal and coding, H[c1][m1] is incremented whenever the (c1, m1) pair

occurs. However, since Te and To in general have different shapes, a full context

may not exist, in which case I fall back to the shorter context [m, l, h] for m1. When

a (c1, m1) pair occurs for the first time, H[c1][m1] = 0 and thus m1 cannot be coded

using c1. I instead encode an empty symbol at index −1 with frequency 1 (i.e.,

H[c1][−1] = 1) to signify to the decoder that c1 cannot be used, then encode m1 with

uniform probability i.e., 1/(m + 1). At the same time, H[c1][m1] is still incremented

to avoid this zero-probability problem the next time the same (c1, m1) pair occurs.

Finally, m2 is also encoded with a context, which combines c1 and m1, since m1 is

already known before m2 is decoded.

• Odd-even context coding. Algorithm 7.5 gives the pseudocode for the odd-even

context encoder, including details on how to perform the lockstep traversal inline and

inplace.

Algorithm 7.5 Odd-even context encoding. The inputs P, d, G, s, bsa, bsb are the same as in

previous algorithms. l and h are, respectively, the resolution level and tree depth of the
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current node during the recursive DT. R is a sorted array containing particles of the current

reference subtree, and GR is the corresponding subgrid where these particles reside.

1: function OeEncode(R, GR, P, G, d, s, l, h, bsa, bsb)

▷ first two steps are the same as 7.2 . . .

▷ step 3: encode the current node

2: m← log2 (n + 1)

3: m1 ← log2 (n1 + 1)

4: m2 ← log2 (n− n1 + 1)

5: R1, R2, GR1 , GR2 ← KdPartition(R,GR,d)

6: P1, P2, G1, G2 ← Partition(P,G,s,d) ▷ see Alg. 2

7: if |R| > 0 then ▷ reference node is present

8: r← log2 (|R|+ 1)

9: r1 ← log2 (|R1|+ 1)

10: r2 ← log2 (|R2|+ 1)

11: c1 ← [m, r, r1, r2, l, h]

12: ContextEncode(m1, c1, bsa, bsb)

13: if CannotInferm2From(m, m1) then

14: c2 ← [m, r, r1, r2, l, h, m1]

15: ContextEncode(m2, c2, bsa, bsb)

16: else ▷ no reference node, minimal context

17: c1 ← [m, l, h]

18: ContextEncode(m1, c1, bsa, bsb)

19: if CannotInferm2From(m, m1) then

20: c2 ← [m, l, h, m1]

21: ContextEncode(m2, c2, bsa, bsb)

▷ step 4: recurse

22: d← Next(d) ▷ next axis of splitting

23: h← h + 1 ▷ next tree depth

24: if |P1| > 0 then ▷ left child

25: ln ← l + (s = odd-even) ▷ next resolution level

26: R1 ← (s = odd-even) ? ∅
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27: OeEncode(R1, GR1 , P1, G1, d, s, ln, h, bsa, bsb)

28: if |P2| > 0 then ▷ right child

29: (R2, GR2)← (s , k-d) ? (R1, GR1)

30: OeEncode(R2, GR2 , P2, G2, d, s, l, h, bsa, bsb)

31:

▷ encode m1 using context c1 into bit streams bsa, bsb

32: function ContextEncode(m1, c1, bsa, bsb)

33: if H[c1][m1] > 0 then ▷ context can be used

34: ArithmeticEncode(m1, H[c1], bsa)

35: else ▷ context cannot be used due to 0 probability

36: H[c1][−1]← 1

37: ArithmeticEncode(−1, H[c1], bsa)

38: TruncatedBinaryEncode(m1, c1.m, bsb)

39: H[c1][m1]← H[c1][m1] + 1

7.4 Evaluation
I evaluate the efficacy of the proposed solutions through various experiments. In the

discussion that follows, both “BT on k-d tree” and “DT on k-d tree” are the baseline DG [57]

methods; all other traversal-tree combinations are my contributions. I quantify the reduction

in data as bits-per-particle (bpp), measured by dividing the number of bits decoded by the

total number of particles originally. Particle are always specified using 32-bit floating point

coordinates, which are then quantized to 32-bit (96 bpp) integers prior to experiments. To

generate an approximation when a traversal stops midway, for each node (G, n) at the

traversal front, one (random) particle is generated within G. I use |c| to refer to the size of

container(s) used for traversal, in terms of number of elements.

I use both the standard peak-signal-to-noise ratio (PSNR) and rendered images,

when appropriate, to assess the quality of partial reconstructions. PSNR is defined

as 20 log10 (W/E), where E is the root mean square point-wise distance between every

reference particle and its closest reconstructed particle, and W is the maximum dimension

of the bounding box for the reference particles. A PSNR or 50 dB means that E is about W
300 ,

and an improvement of 1 dB corresponds to a reduction of E by 10 percent.



161

7.4.1 Adaptive traversal of k-d trees

AT (with the proposed scoring heuristic, Equation 7.1) on k-d trees improves the

rate-distortion trade-off over BT on k-d trees for a wide range of datasets (see Figure 7.10).

I do not include DT in the same figure since the root-mean-square error for DT is often

exceptionally high due to whole regions missing, rendering L2-norm-based quality metric

such as PSNR less meaningful. Visual demonstration of the differences between low-bit-rate

reconstructions using BT and AT is provided in Figure 7.11 (see the first green-highlighted

column pair). I render at low bit rates the outputs of the various traversal and tree

combinations with OSPRay [295]. The bit rates are chosen so that visual differences among

the combinations are most apparent. For the girl dataset, AT (a3) provides a better covering

of space compared to BT (a2), which follows a strict order on each tree depth level, creating

a visible seam where the resolution changes. The same phenomenon occurs for fissure

(comparing b2 and b3). For soldier, although less noticeable, AT (d3) generates a smoother

surface as well. For cosmic web, AT (f3) captures the points of interest — clusters of particles

(galaxies) — better by favoring densely packed nodes. Overall, by being more data-adaptive,

AT can provide significant improvements over BT, both visually and quantitatively (in

PSNR).

• Alternative AT. The default scoring function for AT (Equation 7.1) does not always

work well for all datasets. For example, the rendering of the coal dataset (which

contains simulated coal particles) in Figure 7.12 contains occlusion because particles

on the “surface” are given more importance. Because of occlusion, however, the

majority of particles in dense tree nodes are hidden from view, but these are also

nodes that the scoring function deems important. To improve visual quality, I instead

use an alternative scoring function, removing n from the numerator, to prevent an

overemphasis on dense nodes. The result is a reconstruction with lower PSNR but

improved visual quality (i.e., more similar to the reference, compare Figure 7.12b

and Figure 7.12c), indicating that PSNR does not always capture visual quality. When

particles are intended to be viewed as surfaces, my alternative scoring function often

produces better visualizations, because nodes containing surface particles are given

higher priority, even though they tend to be more sparse.
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7.4.2 Traversals of hybrid and block-hybrid trees

In Figure 7.11, I encode six datasets with different characteristics (rows) and decode them

using five combinations of tree and traversal orders (columns) discussed in the chapter. For

each row, all columns are decoded at the same bit rate, but note that the number of decoded

particles can be different for each method. It can be seen that DT on the hybrid tree is able

to recover coarse reconstructions of the whole space instead of very fine reconstructions of

only parts of the data, as is the case with DT on a k-d tree (see the second green-highlighted

column pair). Compared to BT on k-d tree (DG), DT on hyrid tree tend to produce better

results for dense surface data (girl, soldier), and worse results for sparse scientific data. A

specially difficult case for DT on hybrid tree is molecule, where the distribution is very sparse

but the particles are specified with high precision. In such cases, refining a coarse subset of

particles to high precision is not useful (see Figure 7.11 (c5)).

For most datasets, BAT on block-hybrid tree often improves upon DT on hybrid tree

visually by distributing error more uniformly throughout space. This observation is most

visible when comparing (a5) with (a6), (c5) with (c6), and (e5) with (e6). Interestingly, in

terms of PSNR, BAT on block-hybrid tree tends to perform worse than BT or AT on k-d trees

and sometimes even DT on hybrid trees. Visually, however, BAT typically outperforms all

other methods (most strikingly in the case of molecule), often producing a less blocky look

on densely sampled surfaces compared to BT or AT (see girl or soldier). BAT can also fail

visually (cosmic web) compared to DT on hybrid tree (see (f5) and (f6)) since when dense

regions are clearly preferred, uniform refinement is not a good strategy. Finally, my hybrid

and block-hybrid trees often generate significantly fewer particles at the same bit rates

compared to BT on k-d trees (see fissure, dam break, and cosmic web), which should benefit

downstream processing tasks. The most striking example can be seen by comparing (e6)

with (e2), where BAT produces an almost identical-looking approximation to BT using only

one-eighth the number of particles.

7.4.3 Speed and memory footprint

Figure 7.13 (a, b) shows that DT on any tree and BAT on block-hybrid tree achieve a

constant memory footprint, whereas AT and BT require orders of magnitude more memory.

Compared to DT and BAT, BT and AT also become slower very quickly. Compared to BT,
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my AT requires the same memory footprint and is slower, but can improve reconstruction

quality by a good margin (as discussed in Subsection 7.4.1). The decode time for BAT

grows faster than that of DT (on both k-d and hybrid trees), and its memory footprint is

also higher, while still being asymptotically constant (Figure 7.13, middle). The trade-off is

higher reconstruction quality (Figure 7.11). Notwithstanding its lack of features compared

to BAT on block-hybrid tree, perhaps the best trade-off is had with DT on hybrid tree, which

vastly improves reconstruction quality over DT on k-d tree almost for free. Based on these

results, I recommend AT on k-d trees for small data and BAT on block-hybrid trees for large

data, with AT limited to only the coarse k-d portion at the top.

I test the scalability of BAT on block-hybrid tree against the state-of-the-art octree

compressor, MPEG [257], using the TMC3 [2] reference implementation. I encode eight

datasets in increasing numbers of particles, and record the encoding time and memory

usage of both methods. Figure 7.14 shows that my block-based encoder is several times

faster than MPEG’s encoder and, at the same time, uses an order of magnitude less memory

for the larger datasets. Furthermore, my method’s time requirement and memory footprint

grow at much slower rates. For decoding, a fair comparison is difficult to obtain since

MPEG decodes and outputs one block at a time, whereas my method maintains all the states

necessary for simultaneous progressive decoding of all blocks (important for cross-block

bit allocation). Nevertheless, MPEG crashes while decoding the largest dataset in this

experiment, which consists 400 M particles.

I also encode a dataset with almost one billion particles (detonation-large, with 968M

particles) using the block-hybrid tree, and then progressively decode and render three

approximations from that same encoding (Figure 1.6). Rendering is done with OSPRay [295]

after a subset of particles of the original 968M particles is decoded in each case. Since

OSPRay constructs its own acceleration data structure for rendering which inflates the

memory requirement, without reducing the number of particles, the original dataset could

not be rendered on this machine with 64 GB RAM (it was previously rendered using 3 TB of

RAM [296]). With block-hybrid tree, high-quality reconstructions are possible at significantly

lower particle counts, decoded progressively using a constant memory footprint (50 MB of

RAM).
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7.4.4 Binomial coding

In Figure 7.15, I plot rate-distortion curves for both truncated binary coding [202,284] and

my binomial coding using BT on k-d trees. I use three real-world datasets with approximately

uniform distributions of particles, and a synthetic dataset where the distribution is truly

uniform. It can be seen that, at the same data quality, binomial coding consistently

improves the compression ratio by a factor between 10 and 20 percent. Conversely, at

the same compression ratio, binomial coding on average improves the PSNR by about

0.5 dB. Figure 7.16 visually demonstrates the difference in data quality between binomial

and truncated binary coding, using the fissure dataset, which shows that even a seemingly

small difference of 0.68 dB can translate to a significant visual difference. The most difficult

dataset to compress is unsurprisingly the random one.

To further evaluate the coding efficiency of my implementation, I compress the synthetic

dataset consisting of randomly generated particles, and compare the size of the compressed

bitstream to a theoretically calculated code size. The theoretical code size is calculated by

summing the theoretically smallest number of bits needed to encode n1 under every k-d

tree node (G, n), assuming n1 is binomially distributed given n. Figure 7.17 shows that

my binomial coding implementation achieves code sizes that are virtually the same as the

theoretically calculated ones across all tree depths, meaning the average code size for each

tree node is close to the entropy of the binomial distribution. The same figure also shows

that this (normalized) entropy approaches 0.5 as n gets larger toward the root of the tree,

and 1 as n approaches 1 toward the leafs, consistent with my analysis in Subsection 7.3.1.

This result is encouraging for increasingly larger (and denser) datasets of the future, since

progressive refinements will stop more toward the root, resulting in better compression for

binomial coding, approaching a reduction ratio of 0.5 compared to truncated binary coding.

In terms of performance, binomial coding runs about 1.5 times slower than truncated binary

coding.

7.4.5 Odd-even context coding

To test the efficacy of the odd-even context coding method, I compress several datasets

with two methods: truncated binary coding and context coding. For this comparison, I

always use DT on hybrid trees because odd-even context coding is designed to work with
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this combination. On a hybrid tree, DT visits the resolution levels from coarse to fine; I

therefore record the ratio between the two bitstreams as each resolution level is processed,

and plot these ratios in Figure 7.18 (a ratio less than 1 means context coding is better). The

figure shows that context coding improves on truncated binary coding in compression

ratio for several datasets, compressing up to 40% better (for dancer), and in several cases

up to 20% better at the last resolution level (lossless). Context coding also works better as

the resolution gets finer, likely because sibling subtrees under an odd-even split are more

correlated at finer resolution levels due to them being less spatially separated. On the other

hand, as this distance increases toward coarser resolution levels, the correlation reduces,

and thus compression suffers.

Figure 7.18 also shows that my context coding does not work as well for some datasets,

but is never significantly worse than truncated binary coding. I distinguish two kinds

of datasets: densely sampled surfaces (dashed lines) and sparse but precise particles in

scientific simulations (solid lines). It can be seen that the proposed scheme works better for

the surface datasets, where the particles form very distinct shapes and there are enough

particles that the shapes are relatively well preserved by odd-even subsampling. Such

datasets contain densely distributed particles, therefore they have significantly fewer in-cell

refinement bits. Since such bits tend to be more random, datasets with fewer of them often

compress better. In contrast, the scientific simulation datasets are more difficult to compress

because they are dominated by in-cell refinement bits, due to the particles being relatively

sparse but stored with high precision.

There is one nonsurface dataset (detonation) for which my context-based scheme also

works well. Here, the particles mostly follow a very regular arrangement as they represent

arrays of explosives, and context modeling can exploit such global repetitions. Using

the dancer dataset, Figure 7.19 demonstrates that context coding can result in significant

improvements in PSNR over truncated binary coding for progressive decompression.

Visually, the improvements in PSNR translate to better reconstructed surface at low bit

rates with significantly fewer artifacts (Figure 7.20). In experiments, my implementation of

odd-even context coding is often two times slower (for the encoder), and between three to

eight times slower (for the decoder) than truncated binary coding. The extra cost mostly

comes from the re-partitioning of the particles in the even subtree, which (as expected)
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doubles the computational cost for the encoder. Without odd-even context coding, the

decoder is about four times faster than the encoder since it does not have to partition an

array of particles to obtain node values (instead, node values are decoded from the bit

stream). With odd-even context coding, which adds an extra partitioning step, both the

encoder and the decoder run at similar speeds.

7.4.6 (Near) lossless compression ratio

I compare near lossless compression ratios (lossless with respect to quantized particles)

among four methods: DG [57], my proposed techniques, MPEG [257], and LASZip [127]

for several datasets in Table 7.1. To achieve the best compression, I use k-d trees with

binomial coding for crystal, molecule, salt, fissure, detonation and random-80, block-hybrid trees

with odd-even context coding for girl, dancer, and sodier, and hybrid trees with truncated

binary coding for the rest. For lossless compression of point clouds, LASZip is an industry

standard, and MPEG represents the state-of-the-art in compression ratio. Table 7.1 shows

that my methods mostly achieve comparable lossless compression ratios against that of

DG, which means the use of the odd-even splits does not degrade compression (while

achieving much better quality-memory trade-offs as previously shown). For dense surface

datasets (girl, dancer, soldier), my odd-even context coding results in significantly better

lossless compression ratios over DG. LASZip produces the worst compression ratios among

all methods in most cases, while MPEG compresses the best with its sophisticated context

modeling. Unsurprisingly, MPEG also performs the best for the dense surface datasets

(girl, dancer, soldier), since it is designed specifically for this kind of data. For many of the

coarse-but-precise scientific datasets (molecule, salt, dam break, coal and cosmic web), however,

MPEG’s compression ratios are no better than ours.

detonation contains highly regular, repeating particle arrangements, which MPEG and

LASZip take advantage of, whereas DG and ours do not. However, with additional

dictionary-based compression, my method’s compression ratio increases from 3.85 to 10.3,

comparable to that of LASZip’s. random-80 is a synthetically generated dataset where

a random 80% of the grid cells contain particles. Since my grid-based approach scales

gracefully from sparse to dense data by switching to coding empty cells when particles are

densely distributed, it compresses twice better than DG and four times better than LASZip,
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whereas MPEG simply crashes. Most scientific datasets in practice are sparse relative to

the grid size, but future data will likely become denser as more particles are captured and

simulated.
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Figure 7.1: A k-d tree built for 7 particles in 2D (bottom right). For simplicity, the subdivision
stops when the particles are all separated. Each node contains the number of particles in its
bounding box. Numbers on the edges specify the number of bits required to encode the
corresponding left children nodes (right children are inferred). The numbers written to the
bit stream are (in BT order): 7, 5, 3, 1, 1, 1, 1, using a total of 14 bits.
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Figure 7.2: An example with 11 particles (a to k) on a 42 grid, from which I build a k-d
tree (left) and an odd-even tree (right). The odd-even splits partition space by interleaving
odd-indexed and even-indexed grid cells at each tree level. For simplicity, the trees are built
only until every particle is located to its own cell. The numbers encoded in the bit stream
(using DT) are {11, 6, 3, 1, 1(a), 1( f ), 1, 0, 1(i), 3, 2, 1(b), 1(h), 1, 1(c), 0} for the k-d tree, and
{11, 5, 3, 1, 1(a), 1(b), 1, 0, 1(e), 3, 2, 1( f ), 1(h), 2, 1(i), 0} for the odd-even tree.
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(a) 4 particles in
2D
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(b) The particles encoded as a k-d tree. The total
number of nodes is 11.
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(c) The particles encoded as an odd-even tree.
The total number of nodes is 15.

1 1 1 1
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1 1 2

2 2

4

(d) The particles encoded as a hybrid tree. The
total number of nodes is 13.

Figure 7.3: An example that demonstrates how odd-even trees (right) compress not as well
as k-d trees (left), and how hybrid trees (middle) alleviate this problem. The odd-even tree
uses odd-even splits exclusively, whereas the hybrid tree only uses odd-even splits on the
path connecting the root to the left-most leaf node. Odd-even trees do not compress well
since they create too many nodes to fully locate the particles among all cells.
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k-d tree (forward Morton)

odd-even tree (backward Morton)

hybrid tree (HZ indexing)
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Figure 7.4: A tree implies an ordering of particles following their transformed Morton codes.
Input Morton bits are shown the top and arrows indicate directions of the output bits at the
bottom. K-d trees and odd-even trees use forward and backward Morton codes. Hybrid
trees use HZ indexing [223]. Block-hybrid trees use HZ indexing for the medium portion.
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(a) A hybrid tree with three resolution levels, created with two odd-even splits (at the root and its
left child)
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(b) A block-hybrid tree with two blocks, each of which is a hybrid tree with three resolution levels

Figure 7.5: Hybrid and block-hybrid trees. (a) A hybrid tree created using a particular
combination of odd-even splits (with different colored child nodes) and the standard k-d
splits (same colored child nodes). (b) A block-hybrid tree created by exclusive uses of k-d
splits at shallow depths and hybrid trees further down. Both trees are constructed for the
same 11-particle in Figure 7.2, with additional (conceptual) tree nodes for in-cell refinement
bits, shown in gray.
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Figure 7.6: Schematic of a block-hybrid tree’s bit streams. Left: a block-hybrid tree with
subtrees colored by resolution level. Right: the blocks’ bit streams are stored separately, so
that blocks can be decoded independently, indicated by the arrows. In a block, medium-
portion bits are in depth-first order (by resolution level), whereas in-cell refinement bits
(gray) are in breadth-first order (by bit plane). At decoding time, any of the resolution levels
(colored triangles) can be skipped in favor of more refinement bits for the coarser resolution
levels.
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Figure 7.7: (Normalized) frequencies of n1 (number of particles in the left child), given
n = 16, for both the molecule dataset and a true binomial distribution i.e., B(16, 1

2 ). The
empirical distribution tracks the theoretical distribution well, showing that n1 is clearly not
uniformly distributed.



172

𝑠

𝑠1 𝑠2

𝑛

𝑛1 𝑛2

𝑠1 𝑛1

𝑠 𝑛

𝐓𝑒 𝐓𝑜

odd-even

𝑠2 𝑛2

k-d k-d

Figure 7.8: Similarity between the odd-even subtrees. The left (red) and right (green)
subtrees under an odd-even split can have similar particle distributions, and one can be
used to predict the other. Here, n1 can be inferred from n, s, and s1 (e.g., n1 ≈ ns1/s).
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Figure 7.9: The even subtree T̄e is transformed from a hybrid tree to a k-d tree Te. The
odd subtree To is coded using a lockstep traversal with Te. Local information at the two
front nodes ((Gs, s) and (G, n)) are used for context coding. When To is fully coded, it is
combined with Te and transformed into a k-d tree for next-level prediction.
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Figure 7.10: Rate-distortion curves for AT and BT on k-d trees. AT not only outperforms BT
on all datasets tested, but also produces significantly “smoother” rate-distortion curves.
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Reference	
dataset

(96 bpp )
BT	on	

k-d	tree	(DG)
Proposed	AT	
on	k-d	tree

DT	on	
k-d	tree	(DG)

DT	on	proposed	
hybrid	tree

Proposed	BAT	on
block-hybrid	tree

(a1) n = 729,133
particles

(a2) 49.78 dB; 0.04s
|C| = 113K, n = 113K

(a3) 60.83 dB; 0.07s
|C| = 126K, n = 126K

(a4) N/A; 0.03s
|C| = 24, n = 217K

(a5) 62.24 dB; 0.03s
|C| = 26, n = 157K

(a6) 63.17 dB; 0.08s
|C| = 450, n = 172K

(c1) n = 742,614
particles

(c2) 52.06 dB; 0.28s
|C| = 725K, n = 725K

(c3) 53.06 dB; 0.69s
|C| = 742K, n = 742K

(c4) N/A; 0.13s
|C| = 24, n = 540K

(c5) 41.56 dB; 0.11s
|C| = 24, n = 550K

(c6) 50.45 dB; 0.30s
|C| =580, n = 504K

(d1) n = 4,001,754
particles

(d2) 60.31 dB; 0.06s
|C| = 149K, n = 149K

(d3) 60.87 dB; 0.12s
|C| = 121K, n = 121K

(d4) N/A; 0.06s
|C| = 34, n = 236K

(d5) 59.96 dB; 0.06s
|C| = 34, n = 168K

(d6)	59.84 dB; 0.18s
|C| = 5.2K, n = 164K

(e1) n = 8,054,368
particles

(e2) 64.80 dB; 1.99s
|C| = 5.6M, n = 5.6M 

(e3) 64.44 dB; 4.42s
|C| = 6.4M, n = 6.4M 

(e4) N/A; 1.03s
|C| = 57, n = 721K

(e5) 54.27 dB; 1.04s
|C| = 57, n = 706K

(e6) 53.94 dB; 2.56s
|C| = 280K, n = 640K

(f1) n = 51,214,252
particles

(f2) 62.22 dB; 4.35s
|C| = 12M, n = 12M

(f3) 63.82 dB; 12.44s
|C| = 13M, n = 13M

(f4) N/A; 2.67s
|C| = 59, n = 2.1M

(f5) 54.62 dB; 2.73s
|C| = 59, n = 1.9M

(f6) 54.37 dB; 7.02s
|C| = 810K, n = 1.6M
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(b1) n = 4,788,858
particles

(b2) 53.21 dB; 0.56s
|C| = 1.8M, n = 1.8M

(b3) 53.08 dB; 0.99s
|C| = 1.4M, n = 1.4M

(b4) N/A; 0.25s
|C| = 30, n = 726K

(b5) 50.41 dB; 0.25s
|C| = 30, n = 726K

(b6) 50.37 dB; 0.75s
|C| = 14K, n = 715K

Figure 7.11: Visual comparison of the different traversal-tree combinations (columns)
discussed in this chapter for six datasets (rows). The reduced datasets are shown at 1.1 bpp
(girl), 1.3 bpp (fissure), 4.4 bpp (molecule), 0.4 bpp (soldier), 3.1 bpp (dam break), and 1.3 bpp
(cosmic web).
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(a) 51,214,252 particles (b)0.3 bpp, 66.39 dB (c) 0.3 bpp, 62.56 dB (d)0.3 bpp, 63.15 dB (e) 0.3 bpp, 66.24 dB (f)0.3 bpp, 64.12 dB

co
al

Reference	
(96	bpp)

AT	
on	k-d	tree

Alternative	AT	
on	k-d	tree

BT
on	k-d	tree

Per-resolution	BT
on	hybrid	tree

Alternative	AT
on	hybrid	tree

Figure 7.12: Reconstruction results for alternative combinations of traversal orders and trees,
including the use of an alternative scoring function for AT to obtain a better reconstruction
visually (c), even at a lower PSNR. All reconstructions are at 0.3 bpp. Although not
canonical, BT and AT on hybrid trees are very possible combinations, which may sometimes
be preferable than BT on k-d trees, as is perhaps the case here.
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(a) Decode times

(b) Memory footprints

Figure 7.13: Decode times and memory footprints for combinations of trees and traversal
methods, plotted for the detonation dataset. DT and BAT achieve constant memory footprint
and linearly scaled decode time in number of bits, whereas AT and BT require orders of
magnitude more memory, and also much faster growing decode time.
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(a) Comparison with MPEG

Figure 7.14: Compared to MPEG [257], my block-based encoder (BAT on block-hybrid tree)
is almost 5× to 7× less expensive, and my method’s time and memory costs also grow at
much slower rates.
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Figure 7.15: Rate-distortion curves demonstrate that my proposed binomial encoding
outperforms the standard truncated-binary coding [284] for datasets with approximately
uniform distributions of particles. I also include a synthetic random dataset, with random
particle distribution.
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(a) 8,054,368 particles (b)45.78 dB (c) 46.46 dB 

Reference	
(96	bpp)

Truncated	binary	coding
0.2	bpp

Binomial	coding
0.2	bpp

Figure 7.16: At the same bit rates, binomial coding more faithfully reconstructs features in
the original data: for the fissure dataset, the shape of the crack is more clearly defined with
binomial coding.
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Figure 7.17: Ratios of code sizes (binomial coding over truncated binary coding), both
theoretically calculated and empirically measured, for a synthetic dataset with randomly
generated particles. My binomial coding implementation achieves almost perfect coding
efficiency.
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Figure 7.18: Ratio between the compressed code sizes (context coding over truncated binary
coding) at progressively finer resolution levels, with the last level corresponding to lossless
compression. My context coder works very well for dense surface datasets (solid lines), and
less well for high-precision but sparse datasets (dashed lines).
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Figure 7.19: Rate-distortion plots for the dancer dataset shows that odd-even context coding
significantly outperforms truncated binary coding.



180

(a) 3,130,215 particles (b) 49.85 dB (c) 50.39 dB 

Reference	
(96	bpp)

Truncated	binary
0.03	bpp

Odd-even	context
0.03	bpp

Figure 7.20: Visual comparison between the two coding methods at the same bit rate of 0.03
bpp. Odd-even context coding reproduces the reference data more faithfully (with fewer
artifacts).

Table 7.1: Comparison of lossless compression ratios across four compression methods for
the several datasets used in my experiments. I give further comments in the text for the
datasets marked with *.

datasets # particles DG Ours MPEG LASZip
crystal [198] 16K 2.10 2.11 2.44 1.56
girl [142] 729K 13.90 39.57 67.29 9.92
molecule [296] 742K 2.19 2.20 2.18 1.64
salt [5] 1.8M 2.36 2.38 2.33 1.51
fissure [296] 4.7M 2.54 2.56 3.50 2.13
dancer [142] 3.1M 22.81 35.42 65.02 6.89
soldier [142] 4M 13.70 16.14 21.00 5.56
san miguel [192] 3.6M 3.36 3.20 3.46 2.02
dam break [265] 8M 2.71 2.69 2.69 1.85
coal [196] 27M 3.45 3.42 3.36 2.20
cosmic web [296] 51M 3.17 3.12 3.06 1.72
*detonation [21] 180M 3.08 3.85 24.20 10.30
*random-80 1.6M 42.70 95.50 crashed 27.40



CHAPTER 8

CONCLUSION

I modeled the full space of data reductions with a novel tree Tp
r that unifies precision

and resolution, and accepts approximations as sub-trees produced by valid cuts of Tp
r . The

parameters and trade-offs needed for practical data layouts encoding the tree are provided.

In addition, I provided an empirical study on the system-level considerations leading to an

efficient design, which I showed to be competitive with the state of the art. My Tp
r captures

the essential dependencies among nodes, but not all dependencies. For example, with

filters such as wavelets, there exist data dependencies among neighboring nodes, required

for inverse filtering (I handled this in my implementation). In addition, how cuts can be

economically represented in memory is an open question. For future work, I would like

to determine if and how optimal mixtures of reductions can be automatically found for

scientific tasks with different notions of errors and costs. Extending the current framework

to different grid types, unstructured data, and time-varying data is yet another direction.

Finally, studying how applications such as interactive GPU rendering can benefit from a

data layout such as the one proposed is important.

For progressive streaming, I focus on the trade-off between two prominent dimensions of

data reduction, resolution and precision, with respect to common analysis and visualization

tasks. To keep the study tractable while not compromising the generalizability of results, I

target fundamental analysis and visualization tasks, with an outlook that these can serve

as building blocks for more complex and multiparameter tasks in the future. Although

the work focuses on a small set of core tasks, the framework is generic and applies to any

well-defined metric, and one future direction is to consider a broader set of tasks.

I presented the first empirical study to demonstrate that combining reduction in precision

and resolution can lead to a significant improvement in data quality for the same data

budget, and that different tasks might prefer different resolution-versus-precision trade-offs.
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For example, whereas computing histograms requires high precision, computing derivatives

benefits more from higher resolution, and function reconstruction and isosurface extraction

require a suitable mix of the two (see Figure 6.14). I also showed that common reduction

techniques, e.g., those based on Slvl and Smag, do not perform well when leading zero bits

are removed (to simulate entropy compression). For each task, the relative ordering of

the rate-distortion curves stays largely the same regardless of data sets, although the gaps

among them vary depending on the smoothness and noisiness of the data. Compared

to data-independent streams, signature-based streams often perform better because they

can adapt to the data. They are also amenable for implementation (unlike Sopt), since a

signature is negligibly small and thus can be precomputed and stored during preprocessing.

It is also interesting to consider per-block signatures instead of a global one.

An important question is whether task- and data-dependent streams provide sufficient

advantages over purely data-independent streams. In practice, data would be used for

multiple, and not necessarily predefined, tasks, and maintaining multiple streams will

likely lead to additional overheads. Here, I consider Ssig to be the best possible stream

that could be realized. Improvements on Ssig in the resolution-versus-precision space are

likely possible, but they are unlikely to be significant. Given these assumptions and the fact

that Ssig in most cases provides very similar results to Sbit or Swav, the additional effort

(and potential overheads) for task-dependent bit orderings is unlikely to be beneficial. This

leaves a significant gap between the best data-independent streams and the optimal stream

Sopt. My experiments suggest that the majority of these differences can be attributed to

spatial adaptivity (see Figure 6.14). The prototypical example is isosurface computation,

where Sopt can skip all regions that do not affect any portion of the surface. It may be

worthwhile in future work to investigate solutions to spatial adaptivity to significantly

improve the performance of data-independent streams.

This study can be considered only a first step toward a system of solutions that can

optimize storage, network, and I/O bandwidth to suit specific tasks at hand. Ultimately, my

results can guide development of new data layouts and file formats for scientific data.

For fair comparisons, I always reconstruct the data at full resolution using wavelets.

However, processing and memory costs are important, and it is likely that adaptive

representations would be used in practice [49, 93, 205]. In these cases the error of a given
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approximation depends not only on the available information, but also on the data structure

and algorithm being used. For example, trilinear interpolation on a coarse grid might

produce different results than wavelet reconstruction on the original mesh. There exist

solutions where both interpolations are equivalent [305], but such solutions have not yet

been implemented in standard tools. An important future research direction will be to

understand the implications of the results presented here for existing toolchains such as

VTK.

For particle data, I have presented novel techniques along a tree-based particle

compression pipeline, centered around the concept of an odd-even split. The presented novel

tree construction and traversal techniques achieve a better balance between data quality

and resource requirements compared to other state-of-the-art particle compressors. My

adaptive traversal approach improves over the static breadth-first traversal with respect to

a user-defined error heuristic. Compared to k-d trees, my hybrid trees enable high-quality

depth-first traversal. The block-hybrid tree allows not only independent, low-footprint

encoding and decoding of blocks, but also higher reconstruction quality compared to all other

approaches. The proposed block-adaptive traversal approach allows flexible, error-guided

reconstructions at decoding time independent of how data is compressed. binomial coding

and odd-even context coding significantly improve the compression ratio for datasets they are

designed for by as much as 20% (for uniform distributions) and 40% (for densely sampled

surfaces). All of the proposed techniques benefit the encoder and decoder equally. Working

together, the contributions amount to a highly flexible and scalable particle compression

system, which compares favorably to the state-of-the-art MPEG standard in memory and

speed, both in absolute terms and in rates of growth.

Like DG [57], my method does not take advantage of global redundancy, which could be

useful to compress certain regular arrangements of particles, albeit at the expense of coding

complexity and speed. To realize the odd-even splitting scheme, I need to quantize particle

positions to avoid the inaccuracy caused by floating-point operations, but techniques may

exist that maintain accuracy without quantization. I also do not tackle compression of

attributes other than positions, although odd-even splitting – being based on the lazy

wavelet transform – might suggest a wavelet-based compression scheme for attributes.

There are opportunities for more in-depth studies of the trade-offs between odd-even and
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k-d splits, as well as between various possible combinations of tree and traversal types.

The idea of odd-even splits may be generalized to octrees, although perhaps with different

trade-offs.

For tasks such as such as nearest-neighbor queries, occlusion culling, or empty-space

skipping in rendering, it remains to be seen how the odd-even splitting mechanism affects

application-level concerns, and to what extent my hybrid and block-hybrid trees can be used

for noncompression purposes. For some datasets, neither binomial coding nor odd-even

context coding may be applicable. Such datasets tend to contain nonuniform, relatively

sparse but precise particles, which are common in scientific simulations. Better coding

schemes might be invented to better target these cases, for which I hope the ideas presented

here provide good starting points. Finally, it is also important to study task-oriented error

metrics/heuristics and their utility to drive either tree construction or tree traversal, or both.
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